Un árbol con N Nodes y N-1 aristas tiene 2 colores diferentes para sus Nodes.
Encuentre el subárbol con la diferencia de color mínima, es decir, abs (Nodes de 1 color – Nodes de 2 colores) es mínimo.
Ejemplo:
Input : Edges : 1 2 1 3 2 4 3 5 Colours : 1 1 2 2 1 [1-based indexing where index denotes the node] Output : 2 Explanation : The sub-tree {1-2} and {1-2-3-5} have color difference of 2. Sub-tree {1-2} has two 1-colour nodes and zero 2-colour nodes. So, color difference is 2. Sub-tree {1-2-3-5} has three 1-colour nodes and one 2-colour nodes. So color diff = 2.
Método 1: el problema se puede resolver comprobando todos los subárboles posibles de cada Node del árbol. Esto tomará un tiempo exponencial, ya que verificaremos los subárboles de cada Node.
Método 2: (Eficiente) Si observamos, estamos resolviendo una parte del árbol varias veces. Esto produce subproblemas recurrentes. Podemos usar el enfoque de programación dinámica para obtener la diferencia de color mínima en un recorrido. Para simplificar las cosas, podemos tener valores de color como 1 y -1. Ahora, si tenemos un subárbol con ambos Nodes de colores iguales, nuestra suma de colores será 0. Para obtener la diferencia mínima, debemos tener una suma negativa máxima o una suma positiva máxima.
- Caso 1 Cuando necesitamos tener un subárbol con suma máxima: tomamos un Node si su valor es > 0, es decir, suma(padre) += max(0, suma(hijo))
- Caso 2 Cuando necesitamos tener un subárbol con suma mínima (o suma negativa máxima): Tomamos un Node si su valor < 0, es decir, suma (padre) += min (0, suma (hijo))
Para obtener la suma mínima, podemos intercambiar los colores de los Nodes, es decir, -1 se convierte en 1 y viceversa.
A continuación se muestra la implementación:
C++
// CPP code to find the sub-tree with minimum color // difference in a 2-coloured tree #include <bits/stdc++.h> using namespace std; // Tree traversal to compute minimum difference void dfs(int node, int parent, vector<int> tree[], int colour[], int answer[]) { // Initial min difference is the color of node answer[node] = colour[node]; // Traversing its children for (auto u : tree[node]) { // Not traversing the parent if (u == parent) continue; dfs(u, node, tree, colour, answer); // If the child is adding positively to // difference, we include it in the answer // Otherwise, we leave the sub-tree and // include 0 (nothing) in the answer answer[node] += max(answer[u], 0); } } int maxDiff(vector<int> tree[], int colour[], int N) { int answer[N + 1]; memset(answer, 0, sizeof(answer)); // DFS for colour difference : 1colour - 2colour dfs(1, 0, tree, colour, answer); // Minimum colour difference is maximum answer value int high = 0; for (int i = 1; i <= N; i++) { high = max(high, answer[i]); // Clearing the current value // to check for colour2 as well answer[i] = 0; } // Interchanging the colours for (int i = 1; i <= N; i++) { if (colour[i] == -1) colour[i] = 1; else colour[i] = -1; } // DFS for colour difference : 2colour - 1colour dfs(1, 0, tree, colour, answer); // Checking if colour2 makes the minimum colour // difference for (int i = 1; i < N; i++) high = max(high, answer[i]); return high; } // Driver code int main() { // Nodes int N = 5; // Adjacency list representation vector<int> tree[N + 1]; // Edges tree[1].push_back(2); tree[2].push_back(1); tree[1].push_back(3); tree[3].push_back(1); tree[2].push_back(4); tree[4].push_back(2); tree[3].push_back(5); tree[5].push_back(3); // Index represent the colour of that node // There is no Node 0, so we start from // index 1 to N int colour[] = { 0, 1, 1, -1, -1, 1 }; // Printing the result cout << maxDiff(tree, colour, N); return 0; }
Java
// Java code to find the sub-tree // with minimum color difference // in a 2-coloured tree import java.util.*; class GFG { // Tree traversal to compute minimum difference static void dfs(int node, int parent, Vector<Integer> tree[], int colour[], int answer[]) { // Initial min difference is // the color of node answer[node] = colour[node]; // Traversing its children for (Integer u : tree[node]) { // Not traversing the parent if (u == parent) continue; dfs(u, node, tree, colour, answer); // If the child is adding positively to // difference, we include it in the answer // Otherwise, we leave the sub-tree and // include 0 (nothing) in the answer answer[node] += Math.max(answer[u], 0); } } static int maxDiff(Vector<Integer> tree[], int colour[], int N) { int []answer = new int[N + 1]; // DFS for colour difference : 1colour - 2colour dfs(1, 0, tree, colour, answer); // Minimum colour difference is // maximum answer value int high = 0; for (int i = 1; i <= N; i++) { high = Math.max(high, answer[i]); // Clearing the current value // to check for colour2 as well answer[i] = 0; } // Interchanging the colours for (int i = 1; i <= N; i++) { if (colour[i] == -1) colour[i] = 1; else colour[i] = -1; } // DFS for colour difference : 2colour - 1colour dfs(1, 0, tree, colour, answer); // Checking if colour2 makes the // minimum colour difference for (int i = 1; i < N; i++) high = Math.max(high, answer[i]); return high; } // Driver code public static void main(String []args) { // Nodes int N = 5; // Adjacency list representation Vector<Integer> tree[] = new Vector[N + 1]; for(int i = 0; i < N + 1; i++) tree[i] = new Vector<Integer>(); // Edges tree[1].add(2); tree[2].add(1); tree[1].add(3); tree[3].add(1); tree[2].add(4); tree[4].add(2); tree[3].add(5); tree[5].add(3); // Index represent the colour of that node // There is no Node 0, so we start from // index 1 to N int colour[] = { 0, 1, 1, -1, -1, 1 }; // Printing the result System.out.println(maxDiff(tree, colour, N)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 code to find the sub-tree # with minimum color difference # in a 2-coloured tree # Tree traversal to compute minimum difference def dfs(node, parent, tree, colour, answer): # Initial min difference is # the color of node answer[node] = colour[node] # Traversing its children for u in tree[node]: # Not traversing the parent if (u == parent): continue dfs(u, node, tree, colour, answer) # If the child is Adding positively to # difference, we include it in the answer # Otherwise, we leave the sub-tree and # include 0 (nothing) in the answer answer[node] += max(answer[u], 0) def maxDiff(tree, colour, N): answer = [0 for _ in range(N+1)] # DFS for colour difference : 1colour - 2colour dfs(1, 0, tree, colour, answer) # Minimum colour difference is # maximum answer value high = 0 for i in range(1, N+1): high = max(high, answer[i]) # Clearing the current value # to check for colour2 as well answer[i] = 0 # Interchanging the colours for i in range(1, N+1): if colour[i] == -1: colour[i] = 1 else: colour[i] = -1 # DFS for colour difference : 2colour - 1colour dfs(1, 0, tree, colour, answer) # Checking if colour2 makes the # minimum colour difference for i in range(1, N): high = max(high, answer[i]) return high # Driver code # Nodes N = 5 # Adjacency list representation tree = [list() for _ in range(N+1)] # Edges tree[1].append(2) tree[2].append(1) tree[1].append(3) tree[3].append(1) tree[2].append(4) tree[4].append(2) tree[3].append(5) tree[5].append(3) # Index represent the colour of that node # There is no Node 0, so we start from # index 1 to N colour = [0, 1, 1, -1, -1, 1] # Printing the result print(maxDiff(tree, colour, N)) # This code is contributed by nitibi9839.
C#
// C# code to find the sub-tree // with minimum color difference // in a 2-coloured tree using System; using System.Collections.Generic; class GFG { // Tree traversal to compute minimum difference static void dfs(int node, int parent, List<int> []tree, int []colour, int []answer) { // Initial min difference is // the color of node answer[node] = colour[node]; // Traversing its children foreach (int u in tree[node]) { // Not traversing the parent if (u == parent) continue; dfs(u, node, tree, colour, answer); // If the child is Adding positively to // difference, we include it in the answer // Otherwise, we leave the sub-tree and // include 0 (nothing) in the answer answer[node] += Math.Max(answer[u], 0); } } static int maxDiff(List<int> []tree, int []colour, int N) { int []answer = new int[N + 1]; // DFS for colour difference : 1colour - 2colour dfs(1, 0, tree, colour, answer); // Minimum colour difference is // maximum answer value int high = 0; for (int i = 1; i <= N; i++) { high = Math.Max(high, answer[i]); // Clearing the current value // to check for colour2 as well answer[i] = 0; } // Interchanging the colours for (int i = 1; i <= N; i++) { if (colour[i] == -1) colour[i] = 1; else colour[i] = -1; } // DFS for colour difference : 2colour - 1colour dfs(1, 0, tree, colour, answer); // Checking if colour2 makes the // minimum colour difference for (int i = 1; i < N; i++) high = Math.Max(high, answer[i]); return high; } // Driver code public static void Main(String []args) { // Nodes int N = 5; // Adjacency list representation List<int> []tree = new List<int>[N + 1]; for(int i = 0; i < N + 1; i++) tree[i] = new List<int>(); // Edges tree[1].Add(2); tree[2].Add(1); tree[1].Add(3); tree[3].Add(1); tree[2].Add(4); tree[4].Add(2); tree[3].Add(5); tree[5].Add(3); // Index represent the colour of that node // There is no Node 0, so we start from // index 1 to N int []colour = { 0, 1, 1, -1, -1, 1 }; // Printing the result Console.WriteLine(maxDiff(tree, colour, N)); } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript code to find the sub-tree // with minimum color difference // in a 2-coloured tree // Tree traversal to compute minimum difference function dfs(node, parent, tree, colour, answer) { // Initial min difference is // the color of node answer[node] = colour[node]; // Traversing its children for(var u of tree[node]) { // Not traversing the parent if (u == parent) continue; dfs(u, node, tree, colour, answer); // If the child is Adding positively to // difference, we include it in the answer // Otherwise, we leave the sub-tree and // include 0 (nothing) in the answer answer[node] += Math.max(answer[u], 0); } } function maxDiff(tree, colour, N) { var answer = Array(N+1).fill(0); // DFS for colour difference : 1colour - 2colour dfs(1, 0, tree, colour, answer); // Minimum colour difference is // maximum answer value var high = 0; for (var i = 1; i <= N; i++) { high = Math.max(high, answer[i]); // Clearing the current value // to check for colour2 as well answer[i] = 0; } // Interchanging the colours for (var i = 1; i <= N; i++) { if (colour[i] == -1) colour[i] = 1; else colour[i] = -1; } // DFS for colour difference : 2colour - 1colour dfs(1, 0, tree, colour, answer); // Checking if colour2 makes the // minimum colour difference for (var i = 1; i < N; i++) high = Math.max(high, answer[i]); return high; } // Driver code // Nodes var N = 5; // Adjacency list representation var tree = Array.from(Array(N+1), ()=>Array()); // Edges tree[1].push(2); tree[2].push(1); tree[1].push(3); tree[3].push(1); tree[2].push(4); tree[4].push(2); tree[3].push(5); tree[5].push(3); // Index represent the colour of that node // There is no Node 0, so we start from // index 1 to N var colour = [0, 1, 1, -1, -1, 1]; // Printing the result document.write(maxDiff(tree, colour, N)); </script>
2
Este artículo es una contribución de Rohit Thapliyal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA