Subarreglo de rango máximo para cada índice en Array tal que A[i] = min(A[L], A[L+1], … A[R])

Dada una array arr[] de N enteros distintos, la tarea es calcular para cada índice i (1≤i≤N) un rango [L, R] tal que arr[i] = min(arr[L], arr[ L+1], … arr[R]) , donde L≤i≤R y RL se maximizan.

Ejemplos:

Entrada: N = 3, arr[] = {1, 3, 2}
Salida:  1 3
2 2
2 3
Explicación: 1 es el mínimo en el rango [1, 3]
3 es el mínimo en el rango [2, 2]
2 es mínimo en el rango [2, 3]

Entrada: N = 3, arr[] = {4, 5, 6}
Salida:  1 3
2 3
3 3

 

Enfoque: se puede observar que se requieren elementos anteriores más pequeños y siguientes más pequeños en cada índice para calcular el rango requerido. La idea es usar pilas para encontrar los elementos mayores anteriores y siguientes. Siga los pasos a continuación para resolver el problema:

  • Cree dos arrays , L[] y R[] , para almacenar el elemento más pequeño más cercano a la izquierda y el elemento más pequeño más cercano a la derecha del elemento actual, respectivamente.
  • Cree una pila S y agregue el índice del primer elemento en ella.
  • Atraviese la array dada , arr[] y extraiga la pila hasta la parte superior de la pila , S no es más pequeño que el elemento actual.
  • Ahora configure el elemento más pequeño más cercano a la izquierda, es decir , L[i] como la parte superior de S , y si S está vacío, configúrelo como 0. Empuje el elemento actual a S .
  • Del mismo modo, recorra desde el final en la dirección opuesta y siga los mismos pasos para llenar la array, R[] .
  • Iterar en el rango [1, N] e imprimir L[i] y R[i] para cada índice i .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the range for each index
void rangeFinder(int arr[], int N)
{
    // Array to store index of closest smaller
    // element at left sub-array
    int L[N];
 
    // Array to store index of closest smaller
    // element at right sub-array
    int R[N];
 
    // Stack to find previous smaller element
    stack<int> S;
 
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for (int i = 1; i < N; i++) {
 
        // Pop until the top of stack is greater
        // than current element
        while (!S.empty() && arr[S.top()] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (!S.empty())
            L[i] = S.top() + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
 
    // Empty the stack, S
    while (!S.empty())
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
 
    // Traverse the array from the end
    for (int i = N - 2; i >= 0; i--) {
 
        // Pop until the top of S is greater
        // than current element
        while (!S.empty() && arr[S.top()] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (!S.empty())
            R[i] = S.top() - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
 
    // Print the required range using L and R array
    for (int i = 0; i < N; i++) {
        cout << L[i] + 1 << " " << R[i] + 1 << endl;
    }
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 3, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    rangeFinder(arr, N);
 
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to print the range for each index
static void rangeFinder(int arr[], int N)
{
     
    // Array to store index of closest smaller
    // element at left sub-array
    int[] L = new int[N];
 
    // Array to store index of closest smaller
    // element at right sub-array
    int[] R = new int[N];
   
    // Stack to find previous smaller element
    Stack<Integer> S = new Stack<Integer>();
   
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for(int i = 1; i < N; i++)
    {
         
        // Pop until the top of stack is greater
        // than current element
        while (!S.empty() && arr[S.peek()] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (!S.empty())
            L[i] = S.peek() + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
   
    // Empty the stack, S
    while (!S.empty())
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
   
    // Traverse the array from the end
    for(int i = N - 2; i >= 0; i--)
    {
         
        // Pop until the top of S is greater
        // than current element
        while (!S.empty() && arr[S.peek()] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (!S.empty())
            R[i] = S.peek() - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
   
    // Print the required range using L and R array
    for(int i = 0; i < N; i++)
    {
        System.out.println((L[i] + 1) + " " +
                           (R[i] + 1));
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Input
    int arr[] = { 1, 3, 2 };
    int N = arr.length;
   
    // Function Call
    rangeFinder(arr, N);
}
}
 
// This code is contributed by MuskanKalra1

Python3

# Python3 program for the above approach
 
# Function to print the range for each index
def rangeFinder(arr, N):
     
    # Array to store index of closest smaller
    # element at left sub-array
    L = [0 for i in range(N)]
 
    # Array to store index of closest smaller
    # element at right sub-array
    R = [0 for i in range(N)]
 
    # Stack to find previous smaller element
    S = []
 
    # Since there is no element before first
    # element, so set L[0]=0
    L[0] = 0
 
    # Push the first element index in stack
    S.append(0)
 
    # Traverse the array, arr[]
    for i in range(1, N, 1):
         
        # Pop until the top of stack is greater
        # than current element
        while (len(S) > 0 and
         arr[S[len(S) - 1]] > arr[i]):
            S = S[:-1]
 
        # Update L[i] as peek as it is
        # previous smaller element
        if (len(S) > 0):
            L[i] = S[len(S) - 1] + 1
 
        # Otherwise, update L[i] to 0
        else:
            L[i] = 0
 
        # Push the current index
        S.append(i)
 
    # Empty the stack, S
    while (len(S) > 0):
        S.pop()
         
    # Since there is no element after
    # last element, so set R[N-1]=N-1
    R[N - 1] = N - 1
 
    # Push the last element index into stack
    S.append(N - 1)
 
    # Traverse the array from the end
    i = N - 2
     
    while (i >= 0):
         
        # Pop until the top of S is greater
        # than current element
        while (len(S) > 0 and
         arr[S[len(S) - 1]] > arr[i]):
            S = S[:-1]
 
        # Set R[i] as top as it is previous
        # smaller element from end
        if (len(S) > 0):
            R[i] = S[len(S) - 1] - 1;
 
        # Otherwise, update R[i] as N-1
        else:
            R[i] = N - 1
 
        # Push the current index
        S.append(i)
        i -= 1
 
    # Print the required range using L and R array
    for i in range(N):
        print(L[i] + 1, R[i] + 1)
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    arr = [ 1, 3, 2 ]
    N = len(arr)
 
    # Function Call
    rangeFinder(arr, N)
     
# This code is contributed by ipg2016107

C#

// C# program for the above approach
using System;
using System.Collections;
class GFG {
     
    // Function to print the range for each index
    static void rangeFinder(int[] arr, int N)
    {
          
        // Array to store index of closest smaller
        // element at left sub-array
        int[] L = new int[N];
      
        // Array to store index of closest smaller
        // element at right sub-array
        int[] R = new int[N];
        
        // Stack to find previous smaller element
        Stack S = new Stack();
        
        // Since there is no element before first
        // element, so set L[0]=0
        L[0] = 0;
      
        // Push the first element index in stack
        S.Push(0);
      
        // Traverse the array, arr[]
        for(int i = 1; i < N; i++)
        {
              
            // Pop until the top of stack is greater
            // than current element
            while (S.Count > 0 && arr[(int)S.Peek()] > arr[i])
                S.Pop();
      
            // Update L[i] as peek as it is
            // previous smaller element
            if (S.Count > 0)
                L[i] = (int)S.Peek() + 1;
      
            // Otherwise, update L[i] to 0
            else
                L[i] = 0;
      
            // Push the current index
            S.Push(i);
        }
        
        // Empty the stack, S
        while (S.Count > 0)
            S.Pop();
      
        // Since there is no element after
        // last element, so set R[N-1]=N-1
        R[N - 1] = N - 1;
      
        // Push the last element index into stack
        S.Push(N - 1);
        
        // Traverse the array from the end
        for(int i = N - 2; i >= 0; i--)
        {
              
            // Pop until the top of S is greater
            // than current element
            while (S.Count > 0 && arr[(int)S.Peek()] > arr[i])
                S.Pop();
      
            // Set R[i] as top as it is previous
            // smaller element from end
            if (S.Count > 0)
                R[i] = (int)S.Peek() - 1;
      
            // Otherwise, update R[i] as N-1
            else
                R[i] = N - 1;
      
            // Push the current index
            S.Push(i);
        }
        
        // Print the required range using L and R array
        for(int i = 0; i < N; i++)
        {
            Console.WriteLine((L[i] + 1) + " " + (R[i] + 1));
        }
    }
 
  static void Main()
  {
     
    // Given Input
    int[] arr = { 1, 3, 2 };
    int N = arr.Length;
    
    // Function Call
    rangeFinder(arr, N);
  }
}
 
// This code is contributed by divyesh072019.

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to print the range for each index
function rangeFinder(arr, N) {
    // Array to store index of closest smaller
    // element at left sub-array
    let L = new Array(N).fill(0);
 
    // Array to store index of closest smaller
    // element at right sub-array
    let R = new Array(N).fill(0);
 
    // Stack to find previous smaller element
    let S = [];
 
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for (let i = 1; i < N; i++) {
 
        // Pop until the top of stack is greater
        // than current element
        while (S.length && arr[S[S.length - 1]] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (S.length)
            L[i] = S[S.length - 1] + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
 
    // Empty the stack, S
    while (S.length)
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
 
    // Traverse the array from the end
    for (let i = N - 2; i >= 0; i--) {
 
        // Pop until the top of S is greater
        // than current element
        while (S.length && arr[S[S.length - 1]] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (S.length)
            R[i] = S[S.length - 1] - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
 
    // Print the required range using L and R array
    for (let i = 0; i < N; i++) {
        document.write(L[i] + 1 + " ")
        document.write(R[i] + 1 + "<br>");
    }
}
 
// Driver Code
 
// Given Input
let arr = [1, 3, 2];
let N = arr.length;
 
// Function Call
rangeFinder(arr, N);
 
</script>

Producción:

1 3
2 2
2 3

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por RohitOberoi y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *