Subarreglo de suma máxima de rango de tamaño [L, R]

Dada una array de enteros arr[] de tamaño N y dos enteros L y R . La tarea es encontrar el subarreglo de suma máxima de tamaño entre L y R (ambos inclusive).
Ejemplo: 
 

Entrada: arr[] = {1, 2, 2, 1}, L = 1, R = 3 
Salida:
Explicación: 
El subarreglo de tamaño 1 son {1}, {2}, {2}, {1} y el máximo sum subarreglo = 2 para el subarreglo {2}. 
El subarreglo de tamaño 2 es {1, 2}, {2, 2}, {2, 1}, y el subarreglo de suma máxima = 4 para el subarreglo {2, 2}. 
El subarreglo de tamaño 3 es {1, 2, 2}, {2, 2, 1}, y el subarreglo de suma máxima = 5 para el subarreglo {2, 2, 1}. 
Por lo tanto, el subarreglo de suma máxima posible es 5.
Entrada: arr[] = {-1, -3, -7, -11}, L = 1, R = 4 
Salida: -1 
 

Acercarse: 
 

  1. Aquí usaremos el concepto de ventana deslizante que se discute en esta publicación.
  2. Primero calcule la suma del prefijo de la array en la array pre[] .
  3. A continuación, itere sobre el rango L a N -1 y considere todos los subarreglo de tamaño L a R .
  4. Cree un conjunto múltiple para almacenar sumas de prefijos de longitud de subarreglo L a R .
  5. Ahora, para encontrar el subarreglo de suma máxima que termina en el índice i , simplemente reste pre[i] y el mínimo de todos los valores de pre[i – L] a pre[i – R] .
  6. Finalmente devuelva el máximo de todas las sumas.

Aquí está la implementación del enfoque anterior:
 

C++

// C++ program to find Maximum sum
// subarray of size between L and R.
 
#include <bits/stdc++.h>
using namespace std;
 
// function to find Maximum sum subarray
// of size between L and R
void max_sum_subarray(vector<int> arr,
                      int L, int R)
{
    int n = arr.size();
    int pre[n] = { 0 };
 
    // calculating prefix sum
    pre[0] = arr[0];
    for (int i = 1; i < n; i++) {
        pre[i] = pre[i - 1] + arr[i];
    }
    multiset<int> s1;
 
    // maintain 0 for initial
    // values of i upto R
    // Once i = R, then
    // we need to erase that 0 from
    // our multiset as our first
    // index of subarray
    // cannot be 0 anymore.
    s1.insert(0);
    int ans = INT_MIN;
 
    ans = max(ans, pre[L - 1]);
 
    // we maintain flag to
    // counter if that initial
    // 0 was erased from set or not.
    int flag = 0;
 
    for (int i = L; i < n; i++) {
 
        // erase 0 from multiset once i=b
        if (i - R >= 0) {
            if (flag == 0) {
 
                auto it = s1.find(0);
                s1.erase(it);
                flag = 1;
            }
        }
        // insert pre[i-L]
        if (i - L >= 0)
            s1.insert(pre[i - L]);
 
        // find minimum value in multiset.
        ans = max(ans,
                  pre[i] - *s1.begin());
 
        // erase pre[i-R]
        if (i - R >= 0) {
            auto it = s1.find(pre[i - R]);
            s1.erase(it);
        }
    }
    cout << ans << endl;
}
 
// Driver code
int main()
{
    int L, R;
    L = 1;
    R = 3;
    vector<int> arr = { 1, 2, 2, 1 };
    max_sum_subarray(arr, L, R);
    return 0;
}

Java

// Java program to find Maximum sum
// subarray of size between L and R.
import java.util.*;
class GFG {
// function to find Maximum sum subarray
// of size between L and R
static void max_sum_subarray(List<Integer> arr, int L, int R){
     
    int n = arr.size();
    int[] pre = new int[n + 1];
 
    // calculating prefix sum
    // here pre[0] = 0
    for (int i = 1; i <= n; i++) {
        pre[i] = pre[i - 1]+arr.get(i - 1);
    }   
     
      // treemap for storing prefix sums for
      // subarray length L to R
    TreeMap<Integer, Integer> s1 = new TreeMap<>();
 
    int ans = Integer.MIN_VALUE;
 
    for (int i = L; i <= n; i++) {
         
        // if i > R, erase pre[i - R - 1]
        // note that pre[0] = 0
        if (i > R) {
            // decrement count of pre[i - R - 1]
            s1.put(pre[i - R - 1], s1.get(pre[i - R - 1])-1);
            // if count is zero, element is not present
            // in map so remove it
            if (s1.get(pre[i - R - 1]) == 0)
                s1.remove(pre[i - R - 1]);
        }
 
        // insert pre[i - L]
        s1.put(pre[i - L], s1.getOrDefault(pre[i - L], 0)+1);
 
        // find minimum value in treemap.
        ans = Math.max(ans, pre[i] - s1.firstKey());
 
    }
    System.out.println(ans);
}
 
// Driver code
    public static void main(String[] args){
        int L, R;
        L = 1;
        R = 3;
        List<Integer> arr = Arrays.asList(1, 2, 2, 1);
        max_sum_subarray(arr, L, R);
    }
}
 
// This code is contributed by Utkarsh Sharma

Python3

# Python3 program to find maximum sum
# subarray of size between L and R.
import sys
 
# Function to find maximum sum subarray
# of size between L and R
def max_sum_subarray(arr, L, R):
 
    n = len(arr)
    pre = n * [0]
 
    # Calculating prefix sum
    pre[0] = arr[0]
    for i in range(1, n):
        pre[i] = pre[i - 1] + arr[i]
 
    s1 = []
 
    # Maintain 0 for initial
    # values of i upto R
    # Once i = R, then
    # we need to erase that 0 from
    # our multiset as our first
    # index of subarray
    # cannot be 0 anymore.
    s1.append(0)
    ans = -sys.maxsize - 1
 
    ans = max(ans, pre[L - 1])
 
    # We maintain flag to
    # counter if that initial
    # 0 was erased from set or not.
    flag = 0
 
    for i in range(L, n):
         
        # Erase 0 from multiset once i=b
        if (i - R >= 0):
            if (flag == 0):
                s1.remove(0)
                flag = 1
     
        # Insert pre[i-L]
        if (i - L >= 0):
            s1.append(pre[i - L])
 
        # Find minimum value in multiset.
        ans = max(ans, pre[i] - s1[0])
 
        # Erase pre[i-R]
        if (i - R >= 0):
            s1.remove(pre[i - R])
 
    print(ans)
 
# Driver code
if __name__ == "__main__":
 
    L = 1
    R = 3
    arr = [ 1, 2, 2, 1 ]
     
    max_sum_subarray(arr, L, R)
 
# This code is contributed by chitranayal

C#

// C# program to find Maximum sum
// subarray of size between L and R.
using System;
using System.Collections.Generic;
class GFG
{
     
    // function to find Maximum sum subarray
    // of size between L and R
    static void max_sum_subarray(List<int> arr, int L, int R)
    {
        int n = arr.Count;
        int[] pre = new int[n];
       
        // calculating prefix sum
        pre[0] = arr[0];
        for (int i = 1; i < n; i++)
        {
            pre[i] = pre[i - 1] + arr[i];
        }
        List<int> s1 = new List<int>();
       
        // maintain 0 for initial
        // values of i upto R
        // Once i = R, then
        // we need to erase that 0 from
        // our multiset as our first
        // index of subarray
        // cannot be 0 anymore.
        s1.Add(0);
        int ans = Int32.MinValue;
       
        ans = Math.Max(ans, pre[L - 1]);
       
        // we maintain flag to
        // counter if that initial
        // 0 was erased from set or not.
        int flag = 0;
       
        for (int i = L; i < n; i++)
        {
       
            // erase 0 from multiset once i=b
            if (i - R >= 0)
            {
                if (flag == 0)
                {
       
                    int it = s1.IndexOf(0);
                    s1.RemoveAt(it);
                    flag = 1;
                }
            }
            // insert pre[i-L]
            if (i - L >= 0)
                s1.Add(pre[i - L]);
       
            // find minimum value in multiset.
            ans = Math.Max(ans, pre[i] - s1[0]);
       
            // erase pre[i-R]
            if (i - R >= 0)
            {
                int it = s1.IndexOf(pre[i - R]);
                s1.RemoveAt(it);
            }
        }
        Console.WriteLine(ans);
    } 
 
  // Driver code
  static void Main()
  {
    int L, R;
    L = 1;
    R = 3;
    List<int> arr = new List<int>(){1, 2, 2, 1};
    max_sum_subarray(arr, L, R);
  }
}
 
// This code is contributed by divyesh072019

Javascript

<script>
 
// Javascript program to find Maximum sum
// subarray of size between L and R.
 
// function to find Maximum sum subarray
  // of size between L and R
function max_sum_subarray(arr,L,R)
{
    let n = arr.length;
    let pre = new Array(n);
  
    // calculating prefix sum
    pre[0] = arr[0];
    for (let i = 1; i < n; i++)
    {
      pre[i] = pre[i - 1] + arr[i];
    }
    let s1 = []
  
    // maintain 0 for initial
    // values of i upto R
    // Once i = R, then
    // we need to erase that 0 from
    // our multiset as our first
    // index of subarray
    // cannot be 0 anymore.
    s1.push(0);
    let ans = Number.MIN_VALUE;
  
    ans = Math.max(ans, pre[L - 1]);
  
    // we maintain flag to
    // counter if that initial
    // 0 was erased from set or not.
    let flag = 0;
  
    for (let i = L; i < n; i++)
    {
  
      // erase 0 from multiset once i=b
      if (i - R >= 0)
      {
        if (flag == 0)
        {
          let it = s1.indexOf(0);
          s1.splice(it,1);
          flag = 1;
        }
      }
  
      // insert pre[i-L]
      if (i - L >= 0)
        s1.push(pre[i - L]);
  
      // find minimum value in multiset.
      ans = Math.max(ans, pre[i] - s1[0]);
  
      // erase pre[i-R]
      if (i - R >= 0)
      {
        let it = s1.indexOf(pre[i - R]);
        s1.splice(it,1);
      }
    }
    document.write(ans);
}
 
// Driver code
let L, R;
L = 1;
R = 3;
let arr = [1, 2, 2, 1];
max_sum_subarray(arr, L, R);
                 
// This code is contributed by avanitrachhadiya2155
</script>
Producción: 

5

 

Complejidad de Tiempo: O (N * log N)  
Espacio Auxiliar: O (N)
 

Publicación traducida automáticamente

Artículo escrito por yash2040 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *