Dada una array arr[] , la tarea es encontrar las sub-arrays más pequeñas con GCD igual a 1 . Si no existe tal subarreglo, imprima -1 .
Ejemplos:
Entrada: arr[] = {2, 6, 3}
Salida: 3
{2, 6, 3} es el único subarreglo con GCD = 1.Entrada: arr[] = {2, 2, 2}
Salida: -1
Enfoque: este problema se puede resolver en O (NlogN) utilizando una estructura de datos de árbol de segmentos . El segmento que se construirá se puede usar para responder consultas de rango-gcd.
Entendamos el algoritmo ahora. Utilice la técnica de dos puntos para resolver este problema. Hagamos algunas observaciones antes de discutir el algoritmo.
- Digamos que G es el GCD del subarreglo arr[l…r] y G1 es el GCD del subarreglo arr[l+1…r] . G menor o igual a G1 siempre.
- Digamos que para el L1 dado , R1 es el primer índice tal que GCD del rango [L, R] es 1 que para cualquier L2 mayor o igual que L1 , R2 también será mayor o igual que R1 .
Después de la observación anterior, la técnica de dos punteros tiene mucho sentido, es decir, si se conoce la longitud de la R más pequeña para un índice L y luego para un índice L + 1 , la búsqueda debe comenzar desde R en adelante.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define maxLen 30 // Array to store segment-tree int seg[3 * maxLen]; // Function to build segment-tree to // answer range GCD queries int build(int l, int r, int in, int* arr) { // Base-case if (l == r) return seg[in] = arr[l]; // Mid element of the range int mid = (l + r) / 2; // Merging the result of left and right sub-tree return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr), build(mid + 1, r, 2 * in + 2, arr)); } // Function to perform range GCD queries int query(int l, int r, int l1, int r1, int in) { // Base-cases if (l1 <= l and r <= r1) return seg[in]; if (l > r1 or r < l1) return 0; // Mid-element int mid = (l + r) / 2; // Calling left and right child return __gcd(query(l, mid, l1, r1, 2 * in + 1), query(mid + 1, r, l1, r1, 2 * in + 2)); } // Function to find the required length int findLen(int* arr, int n) { // Building the segment tree build(0, n - 1, 0, arr); // Two pointer variables int i = 0, j = 0; // To store the final answer int ans = INT_MAX; // Looping while (i < n) { // Incrementing j till we don't get // a gcd value of 1 while (j < n and query(0, n - 1, i, j, 0) != 1) j++; if (j == n) break; // Updating the final answer ans = min((j - i + 1), ans); // Incrementing i i++; // Updating j j = max(j, i); } // Returning the final answer if (ans == INT_MAX) return -1; else return ans; } // Driver code int main() { int arr[] = { 2, 2, 2 }; int n = sizeof(arr) / sizeof(int); cout << findLen(arr, n); return 0; }
Java
// Java implementation of the approach class GFG { static int maxLen = 30; // Array to store segment-tree static int []seg = new int[3 * maxLen]; // Function to build segment-tree to // answer range GCD queries static int build(int l, int r, int in, int[] arr) { // Base-case if (l == r) return seg[in] = arr[l]; // Mid element of the range int mid = (l + r) / 2; // Merging the result of left and right sub-tree return seg[in] = __gcd(build(l, mid, 2 * in + 1, arr), build(mid + 1, r, 2 * in + 2, arr)); } // Function to perform range GCD queries static int query(int l, int r, int l1, int r1, int in) { // Base-cases if (l1 <= l && r <= r1) return seg[in]; if (l > r1 || r < l1) return 0; // Mid-element int mid = (l + r) / 2; // Calling left and right child return __gcd(query(l, mid, l1, r1, 2 * in + 1), query(mid + 1, r, l1, r1, 2 * in + 2)); } // Function to find the required length static int findLen(int []arr, int n) { // Building the segment tree build(0, n - 1, 0, arr); // Two pointer variables int i = 0, j = 0; // To store the final answer int ans = Integer.MAX_VALUE; // Looping while (i < n) { // Incrementing j till we don't get // a gcd value of 1 while (j < n && query(0, n - 1, i, j, 0) != 1) j++; if (j == n) break; // Updating the final answer ans = Math.min((j - i + 1), ans); // Incrementing i i++; // Updating j j = Math.max(j, i); } // Returning the final answer if (ans == Integer.MAX_VALUE) return -1; else return ans; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void main(String[] args) { int arr[] = { 2, 2, 2 }; int n = arr.length; System.out.println(findLen(arr, n)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach from math import gcd as __gcd maxLen = 30 # Array to store segment-tree seg = [0 for i in range(3 * maxLen)] # Function to build segment-tree to # answer range GCD queries def build(l, r, inn, arr): # Base-case if (l == r): seg[inn] = arr[l] return seg[inn] # Mid element of the range mid = (l + r) // 2 # Merging the result of # left and right sub-tree seg[inn] = __gcd(build(l, mid, 2 * inn + 1, arr), build(mid + 1, r, 2 * inn + 2, arr)) return seg[inn] # Function to perform range GCD queries def query(l, r, l1, r1, inn): # Base-cases if (l1 <= l and r <= r1): return seg[inn] if (l > r1 or r < l1): return 0 # Mid-element mid = (l + r) // 2 # Calling left and right child x=__gcd(query(l, mid, l1, r1, 2 * inn + 1), query(mid + 1, r, l1, r1, 2 * inn + 2)) return x # Function to find the required length def findLen(arr, n): # Building the segment tree build(0, n - 1, 0, arr) # Two pointer variables i = 0 j = 0 # To store the final answer ans = 10**9 # Loopinng while (i < n): # Incrementing j till we # don't get a gcd value of 1 while (j < n and query(0, n - 1, i, j, 0) != 1): j += 1 if (j == n): break; # Updating the final answer ans = minn((j - i + 1), ans) # Incrementing i i += 1 # Updating j j = max(j, i) # Returning the final answer if (ans == 10**9): return -1 else: return ans # Driver code arr = [2, 2, 2] n = len(arr) print(findLen(arr, n)) # This code is contributed by Mohit Kumar
C#
// C# implementation of the approach using System; class GFG { static int maxLen = 30; // Array to store segment-tree static int []seg = new int[3 * maxLen]; // Function to build segment-tree to // answer range GCD queries static int build(int l, int r, int ind, int[] arr) { // Base-case if (l == r) return seg[ind] = arr[l]; // Mid element of the range int mid = (l + r) / 2; // Merging the result of left and right sub-tree return seg[ind] = __gcd(build(l, mid, 2 * ind + 1, arr), build(mid + 1, r, 2 * ind + 2, arr)); } // Function to perform range GCD queries static int query(int l, int r, int l1, int r1, int ind) { // Base-cases if (l1 <= l && r <= r1) return seg[ind]; if (l > r1 || r < l1) return 0; // Mid-element int mid = (l + r) / 2; // Calling left and right child return __gcd(query(l, mid, l1, r1, 2 * ind + 1), query(mid + 1, r, l1, r1, 2 * ind + 2)); } // Function to find the required length static int findLen(int []arr, int n) { // Building the segment tree build(0, n - 1, 0, arr); // Two pointer variables int i = 0, j = 0; // To store the final answer int ans = int.MaxValue; // Looping while (i < n) { // Incrementing j till we don't get // a gcd value of 1 while (j < n && query(0, n - 1, i, j, 0) != 1) j++; if (j == n) break; // Updating the final answer ans = Math.Min((j - i + 1), ans); // Incrementing i i++; // Updating j j = Math.Max(j, i); } // Returning the final answer if (ans == int.MaxValue) return -1; else return ans; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void Main() { int []arr = { 2, 2, 2 }; int n = arr.Length; Console.WriteLine(findLen(arr, n)); } } // This code is contributed by kanugargng
Javascript
<script> // Javascript implementation of the approach let maxLen = 30; // Array to store segment-tree let seg = new Array(3 * maxLen); // Function to build segment-tree to // answer range GCD queries function build(l,r,In,arr) { // Base-case if (l == r) return seg[In] = arr[l]; // Mid element of the range let mid = Math.floor((l + r) / 2); // Merging the result of left and right sub-tree return seg[In] = __gcd(build(l, mid, 2 * In + 1, arr), build(mid + 1, r, 2 * In + 2, arr)); } // Function to perform range GCD queries function query(l,r,l1,r1,In) { // Base-cases if (l1 <= l && r <= r1) return seg[In]; if (l > r1 || r < l1) return 0; // Mid-element let mid = Math.floor((l + r) / 2); // Calling left and right child return __gcd(query(l, mid, l1, r1, 2 * In + 1), query(mid + 1, r, l1, r1, 2 * In + 2)); } // Function to find the required length function findLen(arr,n) { // Building the segment tree build(0, n - 1, 0, arr); // Two pointer variables let i = 0, j = 0; // To store the final answer let ans = Number.MAX_VALUE; // Looping while (i < n) { // Incrementing j till we don't get // a gcd value of 1 while (j < n && query(0, n - 1, i, j, 0) != 1) j++; if (j == n) break; // Updating the final answer ans = Math.min((j - i + 1), ans); // Incrementing i i++; // Updating j j = Math.max(j, i); } // Returning the final answer if (ans == Number.MAX_VALUE) return -1; else return ans; } function __gcd(a,b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code let arr=[2, 2, 2 ]; let n = arr.length; document.write(findLen(arr, n)); // This code is contributed by unknown2108 </script>
-1
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA