Subsecuencia repetida más larga

Dada una string, imprima la subsecuencia repetida más larga de modo que las dos subsecuencias no tengan el mismo carácter de string en la misma posición, es decir, cualquier i-ésimo carácter en las dos subsecuencias no debería tener el mismo índice en la string original.
 

Longest Repeated Subsequence

Ejemplos: 

Input: str = "aabb"
Output: "ab"

Input: str = "aab"
Output: "a"
The two subsequence are 'a'(first) and 'a' 
(second). Note that 'b' cannot be considered 
as part of subsequence as it would be at same
index in both.

Este problema es solo la modificación del problema de la subsecuencia común más larga . La idea es encontrar el LCS(str, str) donde str es la string de entrada con la restricción de que cuando ambos caracteres son iguales, no deberían estar en el mismo índice en las dos strings. 
Hemos discutido una solución para encontrar la longitud de la subsecuencia repetida más larga. 

C++

// Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
// for complete code.
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
int findLongestRepeatingSubSeq(string str)
{
    int n = str.length();
  
    // Create and initialize DP table
    int dp[n+1][n+1];
  //initializing first row and column in dp table
    for(int i=0;i<=n;i++){
      dp[i][0] =0;
      dp[0][i] =0;
    }
   
  
    // Fill dp table (similar to LCS loops)
    for (int i=1; i<=n; i++)
    {
        for (int j=1; j<=n; j++)
        {
            // If characters match and indexes are
            // not same
            if (str[i-1] == str[j-1] && i != j)
                dp[i][j] =  1 + dp[i-1][j-1];         
                       
            // If characters do not match
            else
                dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
        }
    }
    return dp[n][n];
}

Java

     
// Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
// for complete code.
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
static int findLongestRepeatingSubSeq(String str)
{
    int n = str.length();
   
    // Create and initialize DP table
    int dp[][] = new int[n+1][n+1];
    for (int i=0; i<=n; i++)
        for (int j=0; j<=n; j++)
            dp[i][j] = 0;
   
    // Fill dp table (similar to LCS loops)
    for (int i=1; i<=n; i++)
    {
        for (int j=1; j<=n; j++)
        {
            // If characters match and indexes are
            // not same
            if (str.charAt(i-1)== str.charAt(j-1) && i != j)
                dp[i][j] =  1 + dp[i-1][j-1];         
                        
            // If characters do not match
            else
                dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
        }
    }
    return dp[n][n];
}

Python3

# Python method for Longest Repeated
# Subsequence
 
# Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
# for complete code.
# This function mainly returns LCS(str, str)
# with a condition that same characters at
# same index are not considered.
def findLongestRepeatingSubSeq(str):
    n = len(str)
 
    # Create and initialize DP table
    dp = [[0 for k in range(n+1)] for l in range(n+1)]
 
    # Fill dp table (similar to LCS loops)
    for i in range(1, n+1):
        for j in range(1, n+1):
            # If characters match and indices are not same
            if (str[i-1] == str[j-1] and i != j):
                dp[i][j] = 1 + dp[i-1][j-1]
 
            # If characters do not match
            else:
                dp[i][j] = max(dp[i][j-1], dp[i-1][j])
 
    return dp[n][n]
 
# This code is contributed by Soumen Ghosh

C#

// Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
// for complete code.
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
static int findLongestRepeatingSubSeq(String str)
{
    int n = str.Length;
     
    // Create and initialize DP table
    int [,]dp = new int[n+1,n+1];
    for (int i = 0; i <= n; i++)
        for (int j = 0; j <= n; j++)
            dp[i, j] = 0;
     
    // Fill dp table (similar to LCS loops)
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            // If characters match and indexes are
            // not same
            if (str[i-1]== str[j-1] && i != j)
                dp[i, j] = 1 + dp[i-1, j-1];        
                         
            // If characters do not match
            else
                dp[i,j] = Math.Max(dp[i, j-1], dp[i-1, j]);
        }
    }
    return dp[n, n];
}
 
// This code is contributed by 29AjayKumar

PHP

<?php
// Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
// for complete code.
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
function findLongestRepeatingSubSeq($str)
{
    $n = strlen($str);
 
    // Create and initialize DP table
    $dp = array_fill(0, $n + 1,
          array_fill(0, $n + 1, NULL));
    for ($i = 0; $i <= $n; $i++)
        for ($j = 0; $j <= $n; $j++)
            $dp[$i][$j] = 0;
 
    // Fill dp table (similar to LCS loops)
    for ($i = 1; $i <= $n; $i++)
    {
        for ($j = 1; $j <= $n; $j++)
        {
            // If characters match and indexes
            // are not same
            if ($str[$i - 1] == $str[$j - 1] &&
                                     $i != $j)
                $dp[$i][$j] = 1 + $dp[$i - 1][$j - 1];        
                         
            // If characters do not match
            else
                $dp[$i][$j] = max($dp[$i][$j - 1],
                                  $dp[$i - 1][$j]);
        }
    }
    return $dp[$n][$n];
}
 
// This code is contributed by ita_c
?>

Javascript

<script>
// Refer https://www.geeksforgeeks.org/longest-repeating-subsequence/
// for complete code.
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
    function findLongestRepeatingSubSeq(str)
    {
        let n = str.length;
    
    // Create and initialize DP table
    let dp = new Array(n+1);
    for (let i = 0; i <= n; i++)
    {
        dp[i] = new Array(n+1);
        for (let j = 0; j <= n; j++)
            dp[i][j] = 0;
       }
     
    // Fill dp table (similar to LCS loops)
    for (let i = 1; i <= n; i++)
    {
        for (let j = 1; j <= n; j++)
        {
         
            // If characters match and indexes are
            // not same
            if (str[i - 1] == str[j - 1] && i != j)
                dp[i][j] =  1 + dp[i - 1][j - 1];        
                         
            // If characters do not match
            else
                dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
        }
    }
    return dp[n][n];
    }
         
    // This code is contributed by avanitrachhadiya2155
</script>

Complejidad de tiempo: O(n^2)
¿Cómo imprimir la subsecuencia?  
La solución anterior solo encuentra la longitud de la subsecuencia. Podemos imprimir la subsecuencia usando la tabla dp[n+1][n+1] construida. La idea es similar a imprimir LCS .

   
// Pseudo code to find longest repeated
// subsequence using the dp[][] table filled
// above.

// Initialize result
string res = "";

// Traverse dp[][] from bottom right
i = n, j = n;
while (i > 0 && j > 0)
{
   // If this cell is same as diagonally
   // adjacent cell just above it, then 
   // same characters are present at 
   // str[i-1] and str[j-1]. Append any 
   // of them to result.
   if (dp[i][j] == dp[i-1][j-1] + 1)
   {
       res = res + str[i-1];
       i--;
       j--;
   }

   // Otherwise we move to the side
   // that gave us maximum result
   else if (dp[i][j] == dp[i-1][j])
      i--;
   else
      j--;
 }

 // Since we traverse dp[][] from bottom,
 // we get result in reverse order.
 reverse(res.begin(), res.end());

return res;

A continuación se muestra la implementación de los pasos anteriores. 

C++

// C++ program to find the longest repeated
// subsequence
#include <bits/stdc++.h>
using namespace std;
 
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
string longestRepeatedSubSeq(string str)
{
    // THIS PART OF CODE IS SAME AS BELOW POST.
    // IT FILLS dp[][]
    // https://www.geeksforgeeks.org/longest-repeating-subsequence/
    // OR the code mentioned above.
    int n = str.length();
    int dp[n+1][n+1];
    for (int i=0; i<=n; i++)
        for (int j=0; j<=n; j++)
            dp[i][j] = 0;
    for (int i=1; i<=n; i++)
        for (int j=1; j<=n; j++)
            if (str[i-1] == str[j-1] && i != j)
                dp[i][j] =  1 + dp[i-1][j-1];
            else
                dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
 
 
    // THIS PART OF CODE FINDS THE RESULT STRING USING DP[][]
    // Initialize result
    string res = "";
 
    // Traverse dp[][] from bottom right
    int i = n, j = n;
    while (i > 0 && j > 0)
    {
        // If this cell is same as diagonally
        // adjacent cell just above it, then
        // same characters are present at
        // str[i-1] and str[j-1]. Append any
        // of them to result.
        if (dp[i][j] == dp[i-1][j-1] + 1)
        {
           res = res + str[i-1];
           i--;
           j--;
        }
 
        // Otherwise we move to the side
        // that  gave us maximum result
        else if (dp[i][j] == dp[i-1][j])
            i--;
        else
            j--;
    }
 
    // Since we traverse dp[][] from bottom,
    // we get result in reverse order.
    reverse(res.begin(), res.end());
 
    return res;
}
 
// Driver Program
int main()
{
    string str = "AABEBCDD";
    cout << longestRepeatedSubSeq(str);
    return 0;
}

Java

// Java program to find the longest repeated
// subsequence
import java.util.*;
 
class GFG
{
 
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
static String longestRepeatedSubSeq(String str)
{
    // THIS PART OF CODE IS SAME AS BELOW POST.
    // IT FILLS dp[][]
    // https://www.geeksforgeeks.org/longest-repeating-subsequence/
    // OR the code mentioned above.
    int n = str.length();
    int[][] dp = new int[n + 1][n + 1];
    for (int i = 0; i <= n; i++)
        for (int j = 0; j <= n; j++)
            dp[i][j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (str.charAt(i - 1) == str.charAt(j - 1) && i != j)
                dp[i][j] = 1 + dp[i - 1][j - 1];
            else
                dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
 
 
    // THIS PART OF CODE FINDS
    // THE RESULT STRING USING DP[][]
    // Initialize result
    String res = "";
 
    // Traverse dp[][] from bottom right
    int i = n, j = n;
    while (i > 0 && j > 0)
    {
        // If this cell is same as diagonally
        // adjacent cell just above it, then
        // same characters are present at
        // str[i-1] and str[j-1]. Append any
        // of them to result.
        if (dp[i][j] == dp[i - 1][j - 1] + 1)
        {
        res = res + str.charAt(i - 1);
        i--;
        j--;
        }
 
        // Otherwise we move to the side
        // that gave us maximum result
        else if (dp[i][j] == dp[i - 1][j])
            i--;
        else
            j--;
    }
 
    // Since we traverse dp[][] from bottom,
    // we get result in reverse order.
    String reverse = "";
         
         
    for(int k = res.length() - 1; k >= 0; k--)
        {
            reverse = reverse + res.charAt(k);
        }
 
 
    return reverse;
}
 
// Driver code
public static void main(String args[])
{
    String str = "AABEBCDD";
    System.out.println(longestRepeatedSubSeq(str));
}
}
 
// This code is contributed by
// Surendra_Gangwar

Python3

# Python3 program to find the
# longest repeated subsequence
 
# This function mainly returns LCS(str, str)
# with a condition that same characters
# at same index are not considered.
def longestRepeatedSubSeq(str):
    # This part of code is same as
    # below post it fills dp[][]
    # https://www.geeksforgeeks.org/longest-repeating-subsequence/
    # OR the code mentioned above
    n = len(str)
    dp = [[0 for i in range(n+1)] for j in range(n+1)]
     
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            if (str[i-1] == str[j-1] and i != j):
                dp[i][j] = 1 + dp[i-1][j-1]
            else:
                dp[i][j] = max(dp[i][j-1], dp[i-1][j])
 
    # This part of code finds the result
    # string using dp[][] Initialize result
    res = ''
 
    # Traverse dp[][] from bottom right
    i = n
    j = n
    while (i > 0 and j > 0):
        # If this cell is same as diagonally
        # adjacent cell just above it, then
        # same characters are present at
        # str[i-1] and str[j-1]. Append any
        # of them to result.
        if (dp[i][j] == dp[i-1][j-1] + 1):
            res += str[i-1]
            i -= 1
            j -= 1
 
        # Otherwise we move to the side
        # that gave us maximum result.
        elif (dp[i][j] == dp[i-1][j]):
            i -= 1
        else:
            j -= 1
 
    # Since we traverse dp[][] from bottom,
    # we get result in reverse order.
    res = ''.join(reversed(res))
     
    return res
     
# Driver Program
str = 'AABEBCDD'
print(longestRepeatedSubSeq(str))
 
# This code is contributed by Soumen Ghosh

PHP

<?php
// Php program to find the longest repeated
// subsequence
 
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
function longestRepeatedSubSeq($str)
{
    // THIS PART OF CODE IS SAME AS BELOW POST.
    // IT FILLS dp[][]
    // https://www.geeksforgeeks.org/longest-repeating-subsequence/
    // OR the code mentioned above.
    $n = strlen($str);
    $dp = array(array());
    for ($i = 0; $i <= $n; $i++)
        for ($j = 0; $j <= $n; $j++)
            $dp[$i][$j] = 0;
    for ($i = 1; $i <= $n; $i++)
        for ($j = 1; $j <= $n; $j++)
            if ($str[$i - 1] == $str[$j - 1] && $i != $j)
                $dp[$i][$j] = 1 + $dp[$i - 1][$j - 1];
            else
                $dp[$i][$j] = max($dp[$i][$j - 1],
                                  $dp[$i - 1][$j]);
 
    // THIS PART OF CODE FINDS THE RESULT
    // STRING USING DP[][], Initialize result
    $res = "";
 
    // Traverse dp[][] from bottom right
    $i = $n;
    $j = $n;
    while ($i > 0 && $j > 0)
    {
        // If this cell is same as diagonally
        // adjacent cell just above it, then
        // same characters are present at
        // str[i-1] and str[j-1]. Append any
        // of them to result.
        if ($dp[$i][$j] == $dp[$i - 1][$j - 1] + 1)
        {
            $res = $res.$str[$i - 1];
            $i--;
            $j--;
        }
 
        // Otherwise we move to the side
        // that  gave us maximum result
        else if ($dp[$i][$j] == $dp[$i - 1][$j])
            $i--;
        else
            $j--;
    }
 
    // Since we traverse dp[][] from bottom,
    // we get result in reverse order.
    return strrev($res) ;
}
 
// Driver Code
$str = "AABEBCDD";
echo longestRepeatedSubSeq($str);
 
// This code is contributed by Ryuga
?>

C#

// C# program to find the longest repeated
// subsequence
using System;
using System.Collections.Generic;
     
class GFG
{
 
// This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
static String longestRepeatedSubSeq(String str)
{
    // THIS PART OF CODE IS SAME AS BELOW POST.
    // IT FILLS dp[,]
    // https://www.geeksforgeeks.org/longest-repeating-subsequence/
    // OR the code mentioned above.
    int n = str.Length,i,j;
    int[,] dp = new int[n + 1,n + 1];
    for (i = 0; i <= n; i++)
        for (j = 0; j <= n; j++)
            dp[i, j] = 0;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= n; j++)
            if (str[i - 1] == str[j - 1] && i != j)
                dp[i, j] = 1 + dp[i - 1, j - 1];
            else
                dp[i, j] = Math.Max(dp[i, j - 1], dp[i - 1, j]);
 
 
    // THIS PART OF CODE FINDS
    // THE RESULT STRING USING DP[,]
    // Initialize result
    String res = "";
 
    // Traverse dp[,] from bottom right
    i = n; j= n;
    while (i > 0 && j > 0)
    {
        // If this cell is same as diagonally
        // adjacent cell just above it, then
        // same characters are present at
        // str[i-1] and str[j-1]. Append any
        // of them to result.
        if (dp[i, j] == dp[i - 1,j - 1] + 1)
        {
            res = res + str[i - 1];
            i--;
            j--;
        }
 
        // Otherwise we move to the side
        // that  gave us maximum result
        else if (dp[i,j] == dp[i - 1,j])
            i--;
        else
            j--;
    }
 
    // Since we traverse dp[,] from bottom,
    // we get result in reverse order.
    String reverse = "";
         
         
    for(int k = res.Length - 1; k >= 0; k--)
        {
            reverse = reverse + res[k];
        }
 
 
    return reverse;
}
 
// Driver code
public static void Main(String []args)
{
    String str = "AABEBCDD";
    Console.WriteLine(longestRepeatedSubSeq(str));
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// Javascript program to find the longest repeated
// subsequence
     
    // This function mainly returns LCS(str, str)
// with a condition that same characters at
// same index are not considered.
    function longestRepeatedSubSeq(str)
    {
        // THIS PART OF CODE IS SAME AS BELOW POST.
    // IT FILLS dp[][]
    // https://www.geeksforgeeks.org/longest-repeating-
                                            subsequence/
    // OR the code mentioned above.
    let n = str.length;
    let dp = new Array(n + 1);
    for (let i = 0; i <= n; i++)
    {
        dp[i]=new Array(n+1);
        for (let j = 0; j <= n; j++)
            dp[i][j] = 0;
    }      
      
    for (let i = 1; i <= n; i++)
        for (let j = 1; j <= n; j++)
            if (str[i-1] == str[j-1] && i != j)
                dp[i][j] = 1 + dp[i - 1][j - 1];
            else
                dp[i][j] = Math.max(dp[i][j - 1],
                dp[i - 1][j]);
  
  
    // THIS PART OF CODE FINDS
    // THE RESULT STRING USING DP[][]
    // Initialize result
    let res = "";
  
    // Traverse dp[][] from bottom right
    let i = n, j = n;
    while (i > 0 && j > 0)
    {
        // If this cell is same as diagonally
        // adjacent cell just above it, then
        // same characters are present at
        // str[i-1] and str[j-1]. Append any
        // of them to result.
        if (dp[i][j] == dp[i - 1][j - 1] + 1)
        {
        res = res + str[i-1];
        i--;
        j--;
        }
  
        // Otherwise we move to the side
        // that gave us maximum result
        else if (dp[i][j] == dp[i - 1][j])
            i--;
        else
            j--;
    }
  
    // Since we traverse dp[][] from bottom,
    // we get result in reverse order.
    let reverse = "";
          
          
    for(let k = res.length - 1; k >= 0; k--)
        {
            reverse = reverse + res[k];
        }
  
  
    return reverse;
    }
     
    // Driver code
    let str = "AABEBCDD";
    document.write(longestRepeatedSubSeq(str));
     
    // This code is contributed by rag2127
     
</script>

Producción: 

ABD

Complejidad de tiempo: O(n 2
Espacio auxiliar: O(n 2 )
Este artículo es una contribución de Kartik . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente. 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *