En el árbol binario, el sucesor en orden de un Node es el siguiente Node en el recorrido en orden del árbol binario. Sucesor en orden es NULL para el último Node en el recorrido en orden.
En el árbol de búsqueda binario, el sucesor en orden de un Node de entrada también se puede definir como el Node con la clave más pequeña mayor que la clave del Node de entrada. Por lo tanto, a veces es importante encontrar el siguiente Node en orden.
C++
#include <iostream> using namespace std; /* A binary tree node has data, the pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; struct node* parent; }; struct node* minValue(struct node* node); struct node* inOrderSuccessor( struct node* root, struct node* n) { // step 1 of the above algorithm if (n->right != NULL) return minValue(n->right); // step 2 of the above algorithm struct node* p = n->parent; while (p != NULL && n == p->right) { n = p; p = p->parent; } return p; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ struct node* minValue(struct node* node) { struct node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) { current = current->left; } return current; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof( struct node)); node->data = data; node->left = NULL; node->right = NULL; node->parent = NULL; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { struct node* temp; /* 2. Otherwise, recur down the tree */ if (data <= node->data) { temp = insert(node->left, data); node->left = temp; temp->parent = node; } else { temp = insert(node->right, data); node->right = temp; temp->parent = node; } /* return the (unchanged) node pointer */ return node; } } /* Driver program to test above functions*/ int main() { struct node *root = NULL, *temp, *succ, *min; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root->left->right->right; succ = inOrderSuccessor(root, temp); if (succ != NULL) cout << "\n Inorder Successor of " << temp->data<< " is "<< succ->data; else cout <<"\n Inorder Successor doesn't exit"; getchar(); return 0; } // this code is contributed by shivanisinghss2110
C
#include <stdio.h> #include <stdlib.h> /* A binary tree node has data, the pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; struct node* parent; }; struct node* minValue(struct node* node); struct node* inOrderSuccessor( struct node* root, struct node* n) { // step 1 of the above algorithm if (n->right != NULL) return minValue(n->right); // step 2 of the above algorithm struct node* p = n->parent; while (p != NULL && n == p->right) { n = p; p = p->parent; } return p; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ struct node* minValue(struct node* node) { struct node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) { current = current->left; } return current; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof( struct node)); node->data = data; node->left = NULL; node->right = NULL; node->parent = NULL; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { struct node* temp; /* 2. Otherwise, recur down the tree */ if (data <= node->data) { temp = insert(node->left, data); node->left = temp; temp->parent = node; } else { temp = insert(node->right, data); node->right = temp; temp->parent = node; } /* return the (unchanged) node pointer */ return node; } } /* Driver program to test above functions*/ int main() { struct node *root = NULL, *temp, *succ, *min; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root->left->right->right; succ = inOrderSuccessor(root, temp); if (succ != NULL) printf( "\n Inorder Successor of %d is %d ", temp->data, succ->data); else printf("\n Inorder Successor doesn't exit"); getchar(); return 0; }
Java
// Java program to find minimum // value node in Binary Search Tree // A binary tree node class Node { int data; Node left, right, parent; Node(int d) { data = d; left = right = parent = null; } } class BinaryTree { static Node head; /* Given a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ Node insert(Node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) { return (new Node(data)); } else { Node temp = null; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } Node inOrderSuccessor(Node root, Node n) { // step 1 of the above algorithm if (n.right != null) { return minValue(n.right); } // step 2 of the above algorithm Node p = n.parent; while (p != null && n == p.right) { n = p; p = p.parent; } return p; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ Node minValue(Node node) { Node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } // Driver program to test above functions public static void main(String[] args) { BinaryTree tree = new BinaryTree(); Node root = null, temp = null, suc = null, min = null; root = tree.insert(root, 20); root = tree.insert(root, 8); root = tree.insert(root, 22); root = tree.insert(root, 4); root = tree.insert(root, 12); root = tree.insert(root, 10); root = tree.insert(root, 14); temp = root.left.right.right; suc = tree.inOrderSuccessor(root, temp); if (suc != null) { System.out.println( "Inorder successor of " + temp.data + " is " + suc.data); } else { System.out.println( "Inorder successor does not exist"); } } } // This code has been contributed by Mayank Jaiswal
Python3
# Python program to find the inorder successor in a BST # A binary tree node class Node: # Constructor to create a new node def __init__(self, key): self.data = key self.left = None self.right = None def inOrderSuccessor(n): # Step 1 of the above algorithm if n.right is not None: return minValue(n.right) # Step 2 of the above algorithm p = n.parent while( p is not None): if n != p.right : break n = p p = p.parent return p # Given a non-empty binary search tree, return the # minimum data value found in that tree. Note that the # entire tree doesn't need to be searched def minValue(node): current = node # loop down to find the leftmost leaf while(current is not None): if current.left is None: break current = current.left return current # Given a binary search tree and a number, inserts a # new node with the given number in the correct place # in the tree. Returns the new root pointer which the # caller should then use( the standard trick to avoid # using reference parameters) def insert( node, data): # 1) If tree is empty then return a new singly node if node is None: return Node(data) else: # 2) Otherwise, recur down the tree if data <= node.data: temp = insert(node.left, data) node.left = temp temp.parent = node else: temp = insert(node.right, data) node.right = temp temp.parent = node # return the unchanged node pointer return node # Driver program to test above function root = None # Creating the tree given in the above diagram root = insert(root, 20) root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right succ = inOrderSuccessor(temp) if succ is not None: print ("\nInorder Successor of % d is % d "%(temp.data, succ.data)) else: print ("\nInorder Successor doesn't exist") # This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
// C# program to find minimum // value node in Binary Search Tree using System; // A binary tree node public class Node { public int data; public Node left, right, parent; public Node(int d) { data = d; left = right = parent = null; } } public class BinaryTree { static Node head; /* Given a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ Node insert(Node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) { return (new Node(data)); } else { Node temp = null; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } Node inOrderSuccessor(Node root, Node n) { // step 1 of the above algorithm if (n.right != null) { return minValue(n.right); } // step 2 of the above algorithm Node p = n.parent; while (p != null && n == p.right) { n = p; p = p.parent; } return p; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ Node minValue(Node node) { Node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } // Driver program to test above functions public static void Main(String[] args) { BinaryTree tree = new BinaryTree(); Node root = null, temp = null, suc = null, min = null; root = tree.insert(root, 20); root = tree.insert(root, 8); root = tree.insert(root, 22); root = tree.insert(root, 4); root = tree.insert(root, 12); root = tree.insert(root, 10); root = tree.insert(root, 14); temp = root.left.right.right; suc = tree.inOrderSuccessor(root, temp); if (suc != null) { Console.WriteLine( "Inorder successor of " + temp.data + " is " + suc.data); } else { Console.WriteLine( "Inorder successor does not exist"); } } } // This code is contributed by aashish1995
Javascript
<script> // JavaScript program to find minimum // value node in Binary Search Tree // A binary tree node class Node { constructor(val) { this.data = val; this.left = null; this.right = null; this.parent = null; } } var head; /* * Given a binary search tree and a number, inserts a new node with the given * number in the correct place in the tree. Returns the new root pointer which * the caller should then use (the standard trick to afunction using reference * parameters). */ function insert(node , data) { /* * 1. If the tree is empty, return a new, single node */ if (node == null) { return (new Node(data)); } else { var temp = null; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } function inOrderSuccessor(root, n) { // step 1 of the above algorithm if (n.right != null) { return minValue(n.right); } // step 2 of the above algorithm var p = n.parent; while (p != null && n == p.right) { n = p; p = p.parent; } return p; } /* * Given a non-empty binary search tree, return the minimum data value found in * that tree. Note that the entire tree does not need to be searched. */ function minValue(node) { var current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } // Driver program to test above functions var root = null, temp = null, suc = null, min = null; root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; suc = inOrderSuccessor(root, temp); if (suc != null) { document.write("Inorder successor of " + temp.data + " is " + suc.data); } else { document.write( "Inorder successor does not exist" ); } // This code contributed by gauravrajput1 </script>
C++
// C++ program for above approach #include <iostream> using namespace std; /* A binary tree node has data, the pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; struct node* parent; }; struct node* minValue(struct node* node); struct node* inOrderSuccessor(struct node* root, struct node* n) { // Step 1 of the above algorithm if (n->right != NULL) return minValue(n->right); struct node* succ = NULL; // Start from root and search for // successor down the tree while (root != NULL) { if (n->data < root->data) { succ = root; root = root->left; } else if (n->data > root->data) root = root->right; else break; } return succ; } // Given a non-empty binary search tree, // return the minimum data value found // in that tree. Note that the entire // tree does not need to be searched. struct node* minValue(struct node* node) { struct node* current = node; // Loop down to find the leftmost leaf while (current->left != NULL) { current = current->left; } return current; } // Helper function that allocates a new // node with the given data and NULL left // and right pointers. struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; node->parent = NULL; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // avoid using reference parameters). struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { struct node* temp; /* 2. Otherwise, recur down the tree */ if (data <= node->data) { temp = insert(node->left, data); node->left = temp; temp->parent = node; } else { temp = insert(node->right, data); node->right = temp; temp->parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code int main() { struct node *root = NULL, *temp, *succ, *min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root->left->right->right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != NULL) cout << "\n Inorder Successor of " << temp->data << " is "<< succ->data; else cout <<"\n Inorder Successor doesn't exit"; getchar(); return 0; } // This code is contributed by shivanisinghss2110
C
// C program for above approach #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, the pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; struct node* parent; }; struct node* minValue(struct node* node); struct node* inOrderSuccessor( struct node* root, struct node* n) { // step 1 of the above algorithm if (n->right != NULL) return minValue(n->right); struct node* succ = NULL; // Start from root and search for // successor down the tree while (root != NULL) { if (n->data < root->data) { succ = root; root = root->left; } else if (n->data > root->data) root = root->right; else break; } return succ; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ struct node* minValue(struct node* node) { struct node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) { current = current->left; } return current; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof( struct node)); node->data = data; node->left = NULL; node->right = NULL; node->parent = NULL; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { struct node* temp; /* 2. Otherwise, recur down the tree */ if (data <= node->data) { temp = insert(node->left, data); node->left = temp; temp->parent = node; } else { temp = insert(node->right, data); node->right = temp; temp->parent = node; } /* return the (unchanged) node pointer */ return node; } } /* Driver program to test above functions*/ int main() { struct node *root = NULL, *temp, *succ, *min; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root->left->right->right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != NULL) printf( "\n Inorder Successor of %d is %d ", temp->data, succ->data); else printf("\n Inorder Successor doesn't exit"); getchar(); return 0; } // Thanks to R.Srinivasan for suggesting this method.
Java
// Java program for above approach class GFG { /* A binary tree node has data, the pointer to left child and a pointer to right child */ static class node { int data; node left; node right; node parent; }; static node inOrderSuccessor( node root, node n) { // step 1 of the above algorithm if (n.right != null) return minValue(n.right); node succ = null; // Start from root and search for // successor down the tree while (root != null) { if (n.data < root.data) { succ = root; root = root.left; } else if (n.data > root.data) root = root.right; else break; } return succ; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ static node minValue(node node) { node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } /* Helper function that allocates a new node with the given data and null left and right pointers. */ static node newNode(int data) { node node = new node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to astatic void using reference parameters). */ static node insert(node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { node temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } /* Driver program to test above functions*/ public static void main(String[] args) { node root = null, temp, succ, min; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) System.out.printf( "\n Inorder Successor of %d is %d ", temp.data, succ.data); else System.out.printf("\n Inorder Successor doesn't exit"); } } // This code is contributed by gauravrajput1
Python3
# Python program to find # the inorder successor in a BST # A binary tree node class Node: # Constructor to create a new node def __init__(self, key): self.data = key self.left = None self.right = None def inOrderSuccessor(root, n): # Step 1 of the above algorithm if n.right is not None: return minValue(n.right) # Step 2 of the above algorithm succ=Node(None) while( root): if(root.data<n.data): root=root.right elif(root.data>n.data): succ=root root=root.left else: break return succ # Given a non-empty binary search tree, # return the minimum data value # found in that tree. Note that the # entire tree doesn't need to be searched def minValue(node): current = node # loop down to find the leftmost leaf while(current is not None): if current.left is None: break current = current.left return current # Given a binary search tree # and a number, inserts a # new node with the given # number in the correct place # in the tree. Returns the # new root pointer which the # caller should then use # (the standard trick to avoid # using reference parameters) def insert( node, data): # 1) If tree is empty # then return a new singly node if node is None: return Node(data) else: # 2) Otherwise, recur down the tree if data <= node.data: temp = insert(node.left, data) node.left = temp temp.parent = node else: temp = insert(node.right, data) node.right = temp temp.parent = node # return the unchanged node pointer return node # Driver program to test above function if __name__ == "__main__": root = None # Creating the tree given in the above diagram root = insert(root, 20) root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right succ = inOrderSuccessor( root, temp) if succ is not None: print("Inorder Successor of" , temp.data ,"is" ,succ.data) else: print("InInorder Successor doesn't exist")
C#
// C# program for above approach using System; public class GFG { /* A binary tree node has data, the pointer to left child and a pointer to right child */ public class node { public int data; public node left; public node right; public node parent; }; static node inOrderSuccessor( node root, node n) { // step 1 of the above algorithm if (n.right != null) return minValue(n.right); node succ = null; // Start from root and search for // successor down the tree while (root != null) { if (n.data < root.data) { succ = root; root = root.left; } else if (n.data > root.data) root = root.right; else break; } return succ; } /* Given a non-empty binary search tree, return the minimum data value found in that tree. Note that the entire tree does not need to be searched. */ static node minValue(node node) { node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } /* Helper function that allocates a new node with the given data and null left and right pointers. */ static node newNode(int data) { node node = new node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to astatic void using reference parameters). */ static node insert(node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { node temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } /* Driver program to test above functions*/ public static void Main(String[] args) { node root = null, temp, succ; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) Console.Write( "\n Inorder Successor of {0} is {1} ", temp.data, succ.data); else Console.Write("\n Inorder Successor doesn't exit"); } } // This code is contributed by gauravrajput1
Javascript
<script> class Node { constructor(data) { this.data=data;; this.left=this.right=this.parent=null; } } function inOrderSuccessor(root,n) { // step 1 of the above algorithm if (n.right != null) return minValue(n.right); let succ = null; // Start from root and search for // successor down the tree while (root != null) { if (n.data < root.data) { succ = root; root = root.left; } else if (n.data > root.data) root = root.right; else break; } return succ; } function minValue(node) { let current = node; /* loop down to find the leftmost leaf */ while (current.left != null) { current = current.left; } return current; } function insert(node,data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (new Node(data)); else { let temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* return the (unchanged) node pointer */ return node; } } let root = null, temp, succ, min; // creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) document.write( "<br> Inorder Successor of "+temp.data+" is "+ succ.data); else document.write("<br> Inorder Successor doesn't exit"); // This code is contributed by unknown2108 </script>
C++
// C++ program for above approach #include <iostream> using namespace std; /* A binary tree node has data, the pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; struct node* parent; }; struct node* newNode(int data); void inOrderTraversal(struct node* root, struct node* n, struct node* succ) { if(root==nullptr) { return; } inOrderTraversal(root->left, n, succ); if(root->data>n->data && !succ->left) { succ->left = root; return; } inOrderTraversal(root->right, n, succ); } struct node* inOrderSuccessor(struct node* root, struct node* n) { struct node* succ = newNode(0); inOrderTraversal(root, n, succ); return succ->left; } // Helper function that allocates a new // node with the given data and NULL left // and right pointers. struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; node->parent = NULL; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // avoid using reference parameters). struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { struct node* temp; /* 2. Otherwise, recur down the tree */ if (data <= node->data) { temp = insert(node->left, data); node->left = temp; temp->parent = node; } else { temp = insert(node->right, data); node->right = temp; temp->parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code int main() { struct node *root = NULL, *temp, *succ, *min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root->left->right->right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != NULL) cout << "\n Inorder Successor of " << temp->data << " is "<< succ->data; else cout <<"\n Inorder Successor doesn't exist"; //getchar(); return 0; } // This code is contributed by jaisw7
Java
// Java program for above approach import java.util.*; class GFG { /* * A binary tree node has data, the pointer to left child and a pointer to right * child */ static class node { int data; node left; node right; node parent; }; static void inOrderTraversal(node root) { if (root == null) { return; } inOrderTraversal(root.left); System.out.print(root.data); inOrderTraversal(root.right); } static void inOrderTraversal(node root, node n, node succ) { if (root == null) { return; } inOrderTraversal(root.left, n, succ); if (root.data > n.data && succ.left == null) { succ.left = root; return; } inOrderTraversal(root.right, n, succ); } static node inOrderSuccessor(node root, node n) { node succ = newNode(0); inOrderTraversal(root, n, succ); return succ.left; } // Helper function that allocates a new // node with the given data and null left // and right pointers. static node newNode(int data) { node node = new node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // astatic void using reference parameters). static node insert(node node, int data) { /* * 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { node temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code public static void main(String[] args) { node root = null, temp, succ, min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) System.out.print("\n Inorder Successor of " + temp.data + " is " + succ.data); else System.out.print("\n Inorder Successor doesn't exist"); } } // This code is contributed by Rajput-Ji
C#
// C# program for above approach using System; using System.Collections.Generic; public class GFG { /* * A binary tree node has data, the pointer to left child and a pointer to right * child */ public class node { public int data; public node left; public node right; public node parent; }; static void inOrderTraversal(node root) { if (root == null) { return; } inOrderTraversal(root.left); Console.Write(root.data); inOrderTraversal(root.right); } static void inOrderTraversal(node root, node n, node succ) { if (root == null) { return; } inOrderTraversal(root.left, n, succ); if (root.data > n.data && succ.left == null) { succ.left = root; return; } inOrderTraversal(root.right, n, succ); } static node inOrderSuccessor(node root, node n) { node succ = newNode(0); inOrderTraversal(root, n, succ); return succ.left; } // Helper function that allocates a new // node with the given data and null left // and right pointers. static node newNode(int data) { node node = new node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // astatic void using reference parameters). static node insert(node node, int data) { /* * 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { node temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code public static void Main(String[] args) { node root = null, temp, succ, min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) Console.Write("\n Inorder Successor of " + temp.data + " is " + succ.data); else Console.Write("\n Inorder Successor doesn't exist"); } } // This code contributed by Rajput-Ji
Javascript
<script> // javascript program for above approach /* * A binary tree node has data, the pointer to left child and a pointer to right * child */ class Node { constructor(){ this.data = 0; this.left = null; this.right = null; this.parent = null; } } function inOrderTraversal( root) { if (root == null) { return; } inOrderTraversal(root.left); document.write(root.data); inOrderTraversal(root.right); } function inOrderTraversal( root, n, succ) { if (root == null) { return; } inOrderTraversal(root.left, n, succ); if (root.data > n.data && succ.left == null) { succ.left = root; return; } inOrderTraversal(root.right, n, succ); } function inOrderSuccessor( root, n) { var succ = newNode(0); inOrderTraversal(root, n, succ); return succ.left; } // Helper function that allocates a new // node with the given data and null left // and right pointers. function newNode(data) { var node = new Node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // afunction using reference parameters). function insert( node , data) { /* * 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { var temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code var root = null, temp, succ, min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp); if (succ != null) document.write("\n Inorder Successor of " + temp.data + " is " + succ.data); else document.write("\n Inorder Successor doesn't exist"); // This code contributed by Rajput-Ji </script>
Java
// Java program for above approach import java.util.*; class GFG { /* * A binary tree node has data, the pointer to left child and a pointer to right * child */ static class node { int data; node left; node right; node parent; }; static void inOrderTraversal(node root) { if (root == null) { return; } inOrderTraversal(root.left); System.out.print(root.data); inOrderTraversal(root.right); } public static node inOrderSuccessor(node root, int key) { Deque<node> stack = new ArrayDeque<>(); while(root != null || !stack.isEmpty()){ while(root != null){ stack.push(root); root = root.left; } root = stack.pop(); if(root.data > key) return root; root = root.right; } return null; } // Helper function that allocates a new // node with the given data and null left // and right pointers. static node newNode(int data) { node node = new node(); node.data = data; node.left = null; node.right = null; node.parent = null; return (node); } // Give a binary search tree and a // number, inserts a new node with // the given number in the correct // place in the tree. Returns the new // root pointer which the caller should // then use (the standard trick to // astatic void using reference parameters). static node insert(node node, int data) { /* * 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { node temp; /* 2. Otherwise, recur down the tree */ if (data <= node.data) { temp = insert(node.left, data); node.left = temp; temp.parent = node; } else { temp = insert(node.right, data); node.right = temp; temp.parent = node; } /* Return the (unchanged) node pointer */ return node; } } // Driver code public static void main(String[] args) { node root = null, temp, succ, min; // Creating the tree given in the above diagram root = insert(root, 20); root = insert(root, 8); root = insert(root, 22); root = insert(root, 4); root = insert(root, 12); root = insert(root, 10); root = insert(root, 14); temp = root.left.right.right; // Function Call succ = inOrderSuccessor(root, temp.data); if (succ != null) System.out.print("\n Inorder Successor of " + temp.data + " is " + succ.data); else System.out.print("\n Inorder Successor doesn't exist"); } } // This code is contributed by Nitin Dhamija
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA