Suelte columnas en DataFrame por nombres de etiqueta o por posiciones de índice

En este artículo, discutiremos cómo soltar columnas en Pandas Dataframe por Nombres de etiquetas o por Posiciones de índice. La eliminación de columnas de un DataFrame se puede lograr de varias maneras.

Vamos a crear un marco de datos simple con un diccionario de listas, digamos que los nombres de las columnas son: ‘Nombre’, ‘Edad’, ‘Lugar’, ‘Colegio’.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students,
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                        index =['a', 'b', 'c', 'd', 'e', 
                                'f', 'g', 'i', 'j', 'k'])
# show the dataframe
details

Producción :
dataframe image

Método 1: suelte columnas de un marco de datos utilizando el dataframe.drop() método.
Ejemplo 1: eliminar una columna de mención única específica.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age',
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove column name 'Age' 
rslt_df = details.drop(['Age'],
                       axis = 1)
# show the dataframe
rslt_df

Producción :
drop column from dataframe - 1

Ejemplo 2: eliminar columnas de menciones múltiples específicas.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove two columns name is 'Age' and 
# 'College' 
rslt_df = details.drop(['Age', 'College'],
                       axis = 1)
# show the dataframe
rslt_df

Producción :
drop column from dataframe - 2

Ejemplo 3: eliminar columnas según el índice de columna.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students,
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove three columns as index base
# 0, 1, 2
rslt_df = details.drop(details.columns[[0, 1, 2]],
                       axis = 1)
  
# show the dataframe
rslt_df

Producción :
drop column from dataframe - 3

Método 2: suelte columnas de un marco de datos usando un iloc[]método drop().

Ejemplo: eliminar todas las columnas entre una columna específica y otras columnas (excluir)

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e', 
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove all columns from column
# index 1 to 3(exclude) 
rslt_df = details.drop(details.iloc[:, 1:3],
                       axis = 1)
  
# show the dataframe
rslt_df

Producción :
drop column from dataframe - 4

Método 3: suelte columnas de un marco de datos usando un loc[]método drop().
Ejemplo: elimine todas las columnas entre un nombre de columna específico y otro nombre de columna.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e', 
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove all columns from column name 
# 'Name' to 'College' 
rslt_df = details.drop(details.loc[:, 'Name':'College'].columns,
                       axis = 1)
  
# show the dataframe
# only indexes print
rslt_df

Producción :
drop column from dataframe - 6

Nota: Diferente loc()y iloc()es iloc() excluye el último elemento de rango de columna.

Método 4: suelte columnas de un marco de datos de forma iterativa.
Ejemplo: eliminar una columna específica.

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age', 
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# loop throughout all the columns
for column in details.columns :
    if column == 'Age' :
          
        # delete the column
        del details[column]
          
# show the dataframe
details

Producción :
drop column from dataframe - 7

Publicación traducida automáticamente

Artículo escrito por ankthon y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *