Dadas dos arrays arr1[] de tamaño M y arr2[] de tamaño N , la tarea es encontrar la suma de AND bit a bit de cada elemento de arr1[] con los elementos de la array arr2[] .
Ejemplos:
Entrada: arr1[] = {1, 2, 3}, arr2[] = {1, 2, 3}, M = 3, N = 3
Salida: 2 4 6
Explicación:
Para elementos en el índice 0 en arr1[], Suma = arr1[0] & arr2[0] + arr1[0] & arr2[1] + arr1[0] & arr2[2], Suma = 1 & 1 + 1 & 2 + 1 & 3 = 2
Para elementos en índice 1 en arr1[], Sum = arr1[1] & arr2[0] + arr1[1] & arr2[1] + arr1[1] & arr2[2], Sum= 2 & 1 + 2 & 2 + 2 & 3 = 4
Para elementos en el índice 2 en arr1[], Sum = arr1[2] & arr2[0] + arr1[2] & arr2[1] + arr1[2] & arr2[2], Sum= 3 & 1 + 3 y 2 + 3 y 3 = 6Entrada: arr1[] = {2, 4, 8, 16}, arr2[] = {2, 4, 8, 16}, M = 4, N = 4
Salida: 2 4 8 16
Enfoque ingenuo: el enfoque más simple para resolver el problema es recorrer la array arr1[] y, para cada elemento de la array arr1[] , recorrer la array arr2[] y calcular la suma de Bitwise Y de los elementos actuales de arr1[] con todos los elementos de arr2[] para cada elemento
Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)
Enfoque eficiente: la idea es utilizar la manipulación de bits para resolver el problema anterior. Suponga que cada elemento de la array se puede representar usando solo 32 bits.
- De acuerdo con la propiedad AND bit a bit , mientras se realiza la operación, el i -ésimo bit se establecerá bit solo cuando ambos números tengan un bit establecido en la i -ésima posición, donde 0≤i<32 .
- Por lo tanto, para un número en arr1[], si el i -ésimo bit es un bit establecido, entonces el i -ésimo lugar contribuirá con una suma de K*2 i , donde K es el número total de números en arr2[] habiendo establecido el bit en la i -ésima posición.
Siga los pasos a continuación para resolver el problema:
- Inicialice una frecuencia de array de enteros [] para almacenar el recuento de números en arr2 [] habiendo establecido el bit en la i -ésima posición donde 0≤i<32
- Recorra la array arr2[] y para cada elemento represéntelo en forma binaria e incremente el conteo en la array de frecuencia[] en uno en la posición que tiene 1 en la representación binaria .
- Atraviesa la array arr1[]
- Inicialice una variable entera bitwise_AND_sum con 0 .
- Traverse en el rango [0, 31] usando una variable j .
- Si el j -ésimo bit se establece en bit en la representación binaria de arr2[i] , entonces incremente bitwise_AND_sum por la frecuencia[j]*2 j .
- Imprime la suma obtenida, es decir, bitwise_AND_sum .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to compute the AND sum // for each element of an array void Bitwise_AND_sum_i(int arr1[], int arr2[], int M, int N) { // Declaring an array of // size 32 for storing the // count of each bit int frequency[32] = { 0 }; // Traverse the array arr2[] // and store the count of a // bit in frequency array for (int i = 0; i < N; i++) { // Current bit position int bit_position = 0; int num = arr1[i]; // While num is greater // than 0 while (num) { // Checks if ith bit is // set or not if (num & 1) { // Increment the count of // bit by one frequency[bit_position] += 1; } // Increment the bit position // by one bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for (int i = 0; i < M; i++) { int num = arr2[i]; // Store the ith bit // value int value_at_that_bit = 1; // Total required sum int bitwise_AND_sum = 0; // Traverse in the range [0, 31] for (int bit_position = 0; bit_position < 32; bit_position++) { // Checks if current bit is set if (num & 1) { // Increment the bitwise sum // by frequency[bit_position] // * value_at_that_bit; bitwise_AND_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift vale_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] cout << bitwise_AND_sum << ' '; } return; } // Driver Code int main() { // Given arr1[] int arr1[] = { 1, 2, 3 }; // Given arr2[] int arr2[] = { 1, 2, 3 }; // Size of arr1[] int N = sizeof(arr1) / sizeof(arr1[0]); // Size of arr2[] int M = sizeof(arr2) / sizeof(arr2[0]); // Function Call Bitwise_AND_sum_i(arr1, arr2, M, N); return 0; }
Java
// Java program for the above approach import java.io.*; class GFG { // Driver Code public static void main(String[] args) { // Given arr1[] int[] arr1 = { 1, 2, 3 }; // Given arr2[] int[] arr2 = { 1, 2, 3 }; // Size of arr1[] int N = arr1.length; // Size of arr2[] int M = arr2.length; // Function Call Bitwise_AND_sum_i(arr1, arr2, M, N); } // Function to compute the AND sum // for each element of an array static void Bitwise_AND_sum_i(int arr1[], int arr2[], int M, int N) { // Declaring an array of // size 32 for storing the // count of each bit int[] frequency = new int[32]; // Traverse the array arr2[] // and store the count of a // bit in frequency array for (int i = 0; i < N; i++) { // Current bit position int bit_position = 0; int num = arr1[i]; // While num is greater // than 0 while (num != 0) { // Checks if ith bit is // set or not if ((num & 1) != 0) { // Increment the count of // bit by one frequency[bit_position] += 1; } // Increment the bit position // by one bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for (int i = 0; i < M; i++) { int num = arr2[i]; // Store the ith bit // value int value_at_that_bit = 1; // Total required sum int bitwise_AND_sum = 0; // Traverse in the range [0, 31] for (int bit_position = 0; bit_position < 32; bit_position++) { // Checks if current bit is set if ((num & 1) != 0) { // Increment the bitwise sum // by frequency[bit_position] // * value_at_that_bit; bitwise_AND_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift vale_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] System.out.print( bitwise_AND_sum + " "); } } } // This code is contributed by Dharanendra L V
Python3
# Python3 program for the above approach # Function to compute the AND sum # for each element of an array def Bitwise_AND_sum_i(arr1, arr2, M, N): # Declaring an array of # size 32 for storing the # count of each bit frequency = [0]*32 # Traverse the array arr2[] # and store the count of a # bit in frequency array for i in range(N): # Current bit position bit_position = 0 num = arr1[i] # While num is greater # than 0 while (num): # Checks if ith bit is # set or not if (num & 1): # Increment the count of # bit by one frequency[bit_position] += 1 # Increment the bit position # by one bit_position += 1 # Right shift the num by one num >>= 1 # Traverse in the arr2[] for i in range(M): num = arr2[i] # Store the ith bit # value value_at_that_bit = 1 # Total required sum bitwise_AND_sum = 0 # Traverse in the range [0, 31] for bit_position in range(32): # Checks if current bit is set if (num & 1): # Increment the bitwise sum # by frequency[bit_position] # * value_at_that_bit bitwise_AND_sum += frequency[bit_position] * value_at_that_bit # Right shift num by one num >>= 1 # Left shift vale_at_that_bit by one value_at_that_bit <<= 1 # Print sum obtained for ith # number in arr1[] print(bitwise_AND_sum, end = " ") return # Driver Code if __name__ == '__main__': # Given arr1[] arr1 = [1, 2, 3] # Given arr2 arr2 = [1, 2, 3] # Size of arr1[] N = len(arr1) # Size of arr2[] M = len(arr2) # Function Call Bitwise_AND_sum_i(arr1, arr2, M, N) # This code is contributed by mohit kumar 29
C#
// C# program for the above approach using System; class GFG { // Driver code static public void Main() { // Given arr1[] int[] arr1 = { 1, 2, 3 }; // Given arr2[] int[] arr2 = { 1, 2, 3 }; // Size of arr1[] int N = arr1.Length; // Size of arr2[] int M = arr2.Length; // Function Call Bitwise_AND_sum_i(arr1, arr2, M, N); } // Function to compute the AND sum // for each element of an array static void Bitwise_AND_sum_i(int[] arr1, int[] arr2, int M, int N) { // Declaring an array of // size 32 for storing the // count of each bit int[] frequency = new int[32]; // Traverse the array arr2[] // and store the count of a // bit in frequency array for (int i = 0; i < N; i++) { // Current bit position int bit_position = 0; int num = arr1[i]; // While num is greater // than 0 while (num != 0) { // Checks if ith bit is // set or not if ((num & 1) != 0) { // Increment the count of // bit by one frequency[bit_position] += 1; } // Increment the bit position // by one bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for (int i = 0; i < M; i++) { int num = arr2[i]; // Store the ith bit // value int value_at_that_bit = 1; // Total required sum int bitwise_AND_sum = 0; // Traverse in the range [0, 31] for (int bit_position = 0; bit_position < 32; bit_position++) { // Checks if current bit is set if ((num & 1) != 0) { // Increment the bitwise sum // by frequency[bit_position] // * value_at_that_bit; bitwise_AND_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift vale_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] Console.Write(bitwise_AND_sum + " "); } } } // The code is contributed by Dharanendra L V
Javascript
<script> // Javascript program for the above approach // Function to compute the AND sum // for each element of an array function Bitwise_AND_sum_i(arr1, arr2, M, N) { // Declaring an array of // size 32 for storing the // count of each bit let frequency = new Array(32).fill(0); // Traverse the array arr2[] // and store the count of a // bit in frequency array for (let i = 0; i < N; i++) { // Current bit position let bit_position = 0; let num = arr1[i]; // While num is greater // than 0 while (num) { // Checks if ith bit is // set or not if (num & 1) { // Increment the count of // bit by one frequency[bit_position] += 1; } // Increment the bit position // by one bit_position += 1; // Right shift the num by one num >>= 1; } } // Traverse in the arr2[] for (let i = 0; i < M; i++) { let num = arr2[i]; // Store the ith bit // value let value_at_that_bit = 1; // Total required sum let bitwise_AND_sum = 0; // Traverse in the range [0, 31] for (let bit_position = 0; bit_position < 32; bit_position++) { // Checks if current bit is set if (num & 1) { // Increment the bitwise sum // by frequency[bit_position] // * value_at_that_bit; bitwise_AND_sum += frequency[bit_position] * value_at_that_bit; } // Right shift num by one num >>= 1; // Left shift vale_at_that_bit by one value_at_that_bit <<= 1; } // Print the sum obtained for ith // number in arr1[] document.write(bitwise_AND_sum + ' '); } return; } // Driver Code // Given arr1[] let arr1 = [1, 2, 3]; // Given arr2[] let arr2 = [1, 2, 3]; // Size of arr1[] let N = arr1.length; // Size of arr2[] let M = arr2.length // Function Call Bitwise_AND_sum_i(arr1, arr2, M, N); // This code is contributed by _saurabh_jaiswal </script>
2 4 6
Complejidad de Tiempo: O(N * 32)
Espacio Auxiliar: O(N * 32)