Suma de elementos mínimos y máximos de todos los subarreglos de tamaño k.

Dada una array de enteros positivos y negativos, la tarea es calcular la suma de los elementos mínimo y máximo de todos los subconjuntos de tamaño k.

Ejemplos: 

Input : arr[] = {2, 5, -1, 7, -3, -1, -2}  
        K = 4
Output : 18
Explanation : Subarrays of size 4 are : 
     {2, 5, -1, 7},   min + max = -1 + 7 = 6
     {5, -1, 7, -3},  min + max = -3 + 7 = 4      
     {-1, 7, -3, -1}, min + max = -3 + 7 = 4
     {7, -3, -1, -2}, min + max = -3 + 7 = 4   
     Sum of all min & max = 6 + 4 + 4 + 4 
                          = 18               

Este problema es principalmente una extensión del siguiente problema. 
Máximo de todos los subarreglos de tamaño k 

Método 1 (Simple): Ejecute dos bucles para generar todos los subarreglos de tamaño k y encuentre los valores máximo y mínimo. Finalmente, devuelva la suma de todos los elementos máximos y mínimos. 
El tiempo que tarda esta solución es O(n*k).

Método 2 (Eficiente usando Dequeue): La idea es usar la estructura de datos Dequeue y el concepto de ventana deslizante. Creamos dos colas vacías de doble extremo de tamaño k (‘S’, ‘G’) que solo almacenan índices de elementos de la ventana actual que no son inútiles. Un elemento es inútil si no puede ser máximo o mínimo de los siguientes subarreglos. 

 a) In deque 'G', we maintain decreasing order of 
    values from front to rear
 b) In deque 'S', we maintain increasing order of 
    values from front to rear

1) First window size K
  1.1) For deque 'G', if current element is greater 
       than rear end element, we remove rear while 
       current is greater.
  1.2) For deque 'S', if current element is smaller 
       than rear end element, we just pop it while 
       current is smaller.
  1.3) insert current element in both deque 'G' 'S'

2) After step 1, front of 'G' contains maximum element
   of first window and front of 'S' contains minimum 
   element of first window. Remaining elements of G
   and S may store maximum/minimum for subsequent 
   windows.

3) After that we do traversal for rest array elements.
  3.1) Front element of deque 'G' is greatest and 'S' 
       is smallest element of previous window 
  3.2) Remove all elements which are out of this 
       window [remove element at front of queue ]
  3.3) Repeat steps 1.1 , 1.2 ,1.3 

4) Return sum of minimum and maximum element of all 
   sub-array size k.

A continuación se muestra la implementación de la idea anterior. 

C++

// C++ program to find sum of all minimum and maximum
// elements Of Sub-array Size k.
#include<bits/stdc++.h>
using namespace std;
 
// Returns sum of min and max element of all subarrays
// of size k
int SumOfKsubArray(int arr[] , int n , int k)
{
    int sum = 0;  // Initialize result
 
    // The queue will store indexes of useful elements
    // in every window
    // In deque 'G' we maintain decreasing order of
    // values from front to rear
    // In deque 'S' we  maintain increasing order of
    // values from front to rear
    deque< int > S(k), G(k);
 
    // Process first window of size K
    int i = 0;
    for (i = 0; i < k; i++)
    {
        // Remove all previous greater elements
        // that are useless.
        while ( (!S.empty()) && arr[S.back()] >= arr[i])
            S.pop_back(); // Remove from rear
 
        // Remove all previous smaller that are elements
        // are useless.
        while ( (!G.empty()) && arr[G.back()] <= arr[i])
            G.pop_back(); // Remove from rear
 
        // Add current element at rear of both deque
        G.push_back(i);
        S.push_back(i);
    }
 
    // Process rest of the Array elements
    for (  ; i < n; i++ )
    {
        // Element at the front of the deque 'G' & 'S'
        // is the largest and smallest
        // element of previous window respectively
        sum += arr[S.front()] + arr[G.front()];
 
        // Remove all elements which are out of this
        // window
        while ( !S.empty() && S.front() <= i - k)
            S.pop_front();
        while ( !G.empty() && G.front() <= i - k)
            G.pop_front();
 
        // remove all previous greater element that are
        // useless
        while ( (!S.empty()) && arr[S.back()] >= arr[i])
            S.pop_back(); // Remove from rear
 
        // remove all previous smaller that are elements
        // are useless
        while ( (!G.empty()) && arr[G.back()] <= arr[i])
            G.pop_back(); // Remove from rear
 
        // Add current element at rear of both deque
        G.push_back(i);
        S.push_back(i);
    }
 
    // Sum of minimum and maximum element of last window
    sum += arr[S.front()] + arr[G.front()];
 
    return sum;
}
 
// Driver program to test above functions
int main()
{
    int arr[] = {2, 5, -1, 7, -3, -1, -2} ;
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << SumOfKsubArray(arr, n, k) ;
    return 0;
}

Java

// Java program to find sum of all minimum and maximum
// elements Of Sub-array Size k.
import java.util.Deque;
import java.util.LinkedList;
public class Geeks {
 
    // Returns sum of min and max element of all subarrays
    // of size k
    public static int SumOfKsubArray(int arr[] , int k)
    {
        int sum = 0;  // Initialize result
   
        // The queue will store indexes of useful elements
        // in every window
        // In deque 'G' we maintain decreasing order of
        // values from front to rear
        // In deque 'S' we  maintain increasing order of
        // values from front to rear
        Deque<Integer> S=new LinkedList<>(),G=new LinkedList<>();
 
        // Process first window of size K
        int i = 0;
        for (i = 0; i < k; i++)
        {
            // Remove all previous greater elements
            // that are useless.
            while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i])
                S.removeLast(); // Remove from rear
   
            // Remove all previous smaller that are elements
            // are useless.
            while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i])
                G.removeLast(); // Remove from rear
   
            // Add current element at rear of both deque
            G.addLast(i);
            S.addLast(i);
        }
   
        // Process rest of the Array elements
        for (  ; i < arr.length; i++ )
        {
            // Element at the front of the deque 'G' & 'S'
            // is the largest and smallest
            // element of previous window respectively
            sum += arr[S.peekFirst()] + arr[G.peekFirst()];
   
            // Remove all elements which are out of this
            // window
            while ( !S.isEmpty() && S.peekFirst() <= i - k)
                S.removeFirst();
            while ( !G.isEmpty() && G.peekFirst() <= i - k)
                G.removeFirst();
   
            // remove all previous greater element that are
            // useless
            while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i])
                S.removeLast(); // Remove from rear
   
            // remove all previous smaller that are elements
            // are useless
            while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i])
                G.removeLast(); // Remove from rear
   
            // Add current element at rear of both deque
            G.addLast(i);
            S.addLast(i);
        }
   
        // Sum of minimum and maximum element of last window
        sum += arr[S.peekFirst()] + arr[G.peekFirst()];
   
        return sum;
    }
 
    public static void main(String args[])
    {
        int arr[] = {2, 5, -1, 7, -3, -1, -2} ;
        int k = 3;
        System.out.println(SumOfKsubArray(arr, k));
    }
}
//This code is contributed by Gaurav Tiwari

Python

# Python3 program to find Sum of all minimum and maximum
# elements Of Sub-array Size k.
from collections import deque
 
# Returns Sum of min and max element of all subarrays
# of size k
def SumOfKsubArray(arr, n , k):
 
    Sum = 0 # Initialize result
 
    # The queue will store indexes of useful elements
    # in every window
    # In deque 'G' we maintain decreasing order of
    # values from front to rear
    # In deque 'S' we maintain increasing order of
    # values from front to rear
    S = deque()
    G = deque()
 
 
    # Process first window of size K
 
    for i in range(k):
         
        # Remove all previous greater elements
        # that are useless.
        while ( len(S) > 0 and arr[S[-1]] >= arr[i]):
            S.pop() # Remove from rear
 
        # Remove all previous smaller that are elements
        # are useless.
        while ( len(G) > 0 and arr[G[-1]] <= arr[i]):
            G.pop() # Remove from rear
 
        # Add current element at rear of both deque
        G.append(i)
        S.append(i)
 
    # Process rest of the Array elements
    for i in range(k, n):
         
        # Element at the front of the deque 'G' & 'S'
        # is the largest and smallest
        # element of previous window respectively
        Sum += arr[S[0]] + arr[G[0]]
 
        # Remove all elements which are out of this
        # window
        while ( len(S) > 0 and S[0] <= i - k):
            S.popleft()
        while ( len(G) > 0 and G[0] <= i - k):
            G.popleft()
 
        # remove all previous greater element that are
        # useless
        while ( len(S) > 0 and arr[S[-1]] >= arr[i]):
            S.pop() # Remove from rear
 
        # remove all previous smaller that are elements
        # are useless
        while ( len(G) > 0 and arr[G[-1]] <= arr[i]):
            G.pop() # Remove from rear
 
        # Add current element at rear of both deque
        G.append(i)
        S.append(i)
 
    # Sum of minimum and maximum element of last window
    Sum += arr[S[0]] + arr[G[0]]
 
    return Sum
 
# Driver program to test above functions
arr=[2, 5, -1, 7, -3, -1, -2]
n = len(arr)
k = 3
print(SumOfKsubArray(arr, n, k))
 
# This code is contributed by mohit kumar

C#

// C# program to find sum of all minimum and maximum
// elements Of Sub-array Size k.
using System;
using System.Collections.Generic;
class Geeks
{
 
  // Returns sum of min and max element of all subarrays
  // of size k
  public static int SumOfKsubArray(int []arr , int k)
  {
    int sum = 0;  // Initialize result
 
    // The queue will store indexes of useful elements
    // in every window
    // In deque 'G' we maintain decreasing order of
    // values from front to rear
    // In deque 'S' we  maintain increasing order of
    // values from front to rear
    List<int> S = new List<int>();
    List<int> G = new List<int>();
 
    // Process first window of size K
    int i = 0;
    for (i = 0; i < k; i++)
    {
 
      // Remove all previous greater elements
      // that are useless.
      while ( S.Count != 0 && arr[S[S.Count - 1]] >= arr[i])
        S.RemoveAt(S.Count - 1); // Remove from rear
 
      // Remove all previous smaller that are elements
      // are useless.
      while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i])
        G.RemoveAt(G.Count - 1); // Remove from rear
 
      // Add current element at rear of both deque
      G.Add(i);
      S.Add(i);
    }
 
    // Process rest of the Array elements
    for (  ; i < arr.Length; i++ )
    {
 
      // Element at the front of the deque 'G' & 'S'
      // is the largest and smallest
      // element of previous window respectively
      sum += arr[S[0]] + arr[G[0]];
 
      // Remove all elements which are out of this
      // window
      while ( S.Count != 0 && S[0] <= i - k)
        S.RemoveAt(0);
      while ( G.Count != 0 && G[0] <= i - k)
        G.RemoveAt(0);
 
      // remove all previous greater element that are
      // useless
      while ( S.Count != 0 && arr[S[S.Count-1]] >= arr[i])
        S.RemoveAt(S.Count - 1 ); // Remove from rear
 
      // remove all previous smaller that are elements
      // are useless
      while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i])
        G.RemoveAt(G.Count - 1); // Remove from rear
 
      // Add current element at rear of both deque
      G.Add(i);
      S.Add(i);
    }
 
    // Sum of minimum and maximum element of last window
    sum += arr[S[0]] + arr[G[0]];  
    return sum;
  }
 
  // Driver code
  public static void Main(String []args)
  {
    int []arr = {2, 5, -1, 7, -3, -1, -2} ;
    int k = 3;
    Console.WriteLine(SumOfKsubArray(arr, k));
  }
}
 
// This code is contributed by gauravrajput1

Javascript

<script>
 
// JavaScript program to find sum of all minimum and maximum
// elements Of Sub-array Size k.
 
 
// Returns sum of min and max element of all subarrays
// of size k
function SumOfKsubArray(arr , k)
{
    let sum = 0; // Initialize result
 
    // The queue will store indexes of useful elements
    // in every window
    // In deque 'G' we maintain decreasing order of
    // values from front to rear
    // In deque 'S' we maintain increasing order of
    // values from front to rear
    let S = [];
    let G = [];
 
    // Process first window of size K
    let i = 0;
    for (i = 0; i < k; i++)
    {
 
    // Remove all previous greater elements
    // that are useless.
    while ( S.length != 0 && arr[S[S.length - 1]] >= arr[i])
        S.pop(); // Remove from rear
 
    // Remove all previous smaller that are elements
    // are useless.
    while ( G.length != 0 && arr[G[G.length - 1]] <= arr[i])
        G.pop(); // Remove from rear
 
    // Add current element at rear of both deque
    G.push(i);
    S.push(i);
    }
 
    // Process rest of the Array elements
    for ( ; i < arr.length; i++ )
    {
 
    // Element at the front of the deque 'G' & 'S'
    // is the largest and smallest
    // element of previous window respectively
    sum += arr[S[0]] + arr[G[0]];
 
    // Remove all elements which are out of this
    // window
    while ( S.length != 0 && S[0] <= i - k)
        S.shift(0);
    while ( G.length != 0 && G[0] <= i - k)
        G.shift(0);
 
    // remove all previous greater element that are
    // useless
    while ( S.length != 0 && arr[S[S.length-1]] >= arr[i])
        S.pop(); // Remove from rear
 
    // remove all previous smaller that are elements
    // are useless
    while ( G.length != 0 && arr[G[G.length - 1]] <= arr[i])
        G.pop(); // Remove from rear
 
    // Add current element at rear of both deque
    G.push(i);
    S.push(i);
    }
 
    // Sum of minimum and maximum element of last window
    sum += arr[S[0]] + arr[G[0]];
    return sum;
}
 
// Driver code
 
    let arr = [2, 5, -1, 7, -3, -1, -2];
    let k = 3;
    document.write(SumOfKsubArray(arr, k));
 
// This code is contributed by _saurabh_jaiswal
 
</script>
Producción

14

Complejidad temporal: O(n)
Espacio auxiliar: O(k)

Este artículo es una contribución de Nishant_Singh (Pintu) . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *