Dada una array de enteros positivos y negativos, la tarea es calcular la suma de los elementos mínimo y máximo de todos los subconjuntos de tamaño k.
Ejemplos:
Input : arr[] = {2, 5, -1, 7, -3, -1, -2} K = 4 Output : 18 Explanation : Subarrays of size 4 are : {2, 5, -1, 7}, min + max = -1 + 7 = 6 {5, -1, 7, -3}, min + max = -3 + 7 = 4 {-1, 7, -3, -1}, min + max = -3 + 7 = 4 {7, -3, -1, -2}, min + max = -3 + 7 = 4 Sum of all min & max = 6 + 4 + 4 + 4 = 18
Este problema es principalmente una extensión del siguiente problema.
Máximo de todos los subarreglos de tamaño k
Método 1 (Simple): Ejecute dos bucles para generar todos los subarreglos de tamaño k y encuentre los valores máximo y mínimo. Finalmente, devuelva la suma de todos los elementos máximos y mínimos.
El tiempo que tarda esta solución es O(n*k).
Método 2 (Eficiente usando Dequeue): La idea es usar la estructura de datos Dequeue y el concepto de ventana deslizante. Creamos dos colas vacías de doble extremo de tamaño k (‘S’, ‘G’) que solo almacenan índices de elementos de la ventana actual que no son inútiles. Un elemento es inútil si no puede ser máximo o mínimo de los siguientes subarreglos.
a) In deque 'G', we maintain decreasing order of values from front to rear b) In deque 'S', we maintain increasing order of values from front to rear 1) First window size K 1.1) For deque 'G', if current element is greater than rear end element, we remove rear while current is greater. 1.2) For deque 'S', if current element is smaller than rear end element, we just pop it while current is smaller. 1.3) insert current element in both deque 'G' 'S' 2) After step 1, front of 'G' contains maximum element of first window and front of 'S' contains minimum element of first window. Remaining elements of G and S may store maximum/minimum for subsequent windows. 3) After that we do traversal for rest array elements. 3.1) Front element of deque 'G' is greatest and 'S' is smallest element of previous window 3.2) Remove all elements which are out of this window [remove element at front of queue ] 3.3) Repeat steps 1.1 , 1.2 ,1.3 4) Return sum of minimum and maximum element of all sub-array size k.
A continuación se muestra la implementación de la idea anterior.
C++
// C++ program to find sum of all minimum and maximum // elements Of Sub-array Size k. #include<bits/stdc++.h> using namespace std; // Returns sum of min and max element of all subarrays // of size k int SumOfKsubArray(int arr[] , int n , int k) { int sum = 0; // Initialize result // The queue will store indexes of useful elements // in every window // In deque 'G' we maintain decreasing order of // values from front to rear // In deque 'S' we maintain increasing order of // values from front to rear deque< int > S(k), G(k); // Process first window of size K int i = 0; for (i = 0; i < k; i++) { // Remove all previous greater elements // that are useless. while ( (!S.empty()) && arr[S.back()] >= arr[i]) S.pop_back(); // Remove from rear // Remove all previous smaller that are elements // are useless. while ( (!G.empty()) && arr[G.back()] <= arr[i]) G.pop_back(); // Remove from rear // Add current element at rear of both deque G.push_back(i); S.push_back(i); } // Process rest of the Array elements for ( ; i < n; i++ ) { // Element at the front of the deque 'G' & 'S' // is the largest and smallest // element of previous window respectively sum += arr[S.front()] + arr[G.front()]; // Remove all elements which are out of this // window while ( !S.empty() && S.front() <= i - k) S.pop_front(); while ( !G.empty() && G.front() <= i - k) G.pop_front(); // remove all previous greater element that are // useless while ( (!S.empty()) && arr[S.back()] >= arr[i]) S.pop_back(); // Remove from rear // remove all previous smaller that are elements // are useless while ( (!G.empty()) && arr[G.back()] <= arr[i]) G.pop_back(); // Remove from rear // Add current element at rear of both deque G.push_back(i); S.push_back(i); } // Sum of minimum and maximum element of last window sum += arr[S.front()] + arr[G.front()]; return sum; } // Driver program to test above functions int main() { int arr[] = {2, 5, -1, 7, -3, -1, -2} ; int n = sizeof(arr)/sizeof(arr[0]); int k = 3; cout << SumOfKsubArray(arr, n, k) ; return 0; }
Java
// Java program to find sum of all minimum and maximum // elements Of Sub-array Size k. import java.util.Deque; import java.util.LinkedList; public class Geeks { // Returns sum of min and max element of all subarrays // of size k public static int SumOfKsubArray(int arr[] , int k) { int sum = 0; // Initialize result // The queue will store indexes of useful elements // in every window // In deque 'G' we maintain decreasing order of // values from front to rear // In deque 'S' we maintain increasing order of // values from front to rear Deque<Integer> S=new LinkedList<>(),G=new LinkedList<>(); // Process first window of size K int i = 0; for (i = 0; i < k; i++) { // Remove all previous greater elements // that are useless. while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i]) S.removeLast(); // Remove from rear // Remove all previous smaller that are elements // are useless. while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i]) G.removeLast(); // Remove from rear // Add current element at rear of both deque G.addLast(i); S.addLast(i); } // Process rest of the Array elements for ( ; i < arr.length; i++ ) { // Element at the front of the deque 'G' & 'S' // is the largest and smallest // element of previous window respectively sum += arr[S.peekFirst()] + arr[G.peekFirst()]; // Remove all elements which are out of this // window while ( !S.isEmpty() && S.peekFirst() <= i - k) S.removeFirst(); while ( !G.isEmpty() && G.peekFirst() <= i - k) G.removeFirst(); // remove all previous greater element that are // useless while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i]) S.removeLast(); // Remove from rear // remove all previous smaller that are elements // are useless while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i]) G.removeLast(); // Remove from rear // Add current element at rear of both deque G.addLast(i); S.addLast(i); } // Sum of minimum and maximum element of last window sum += arr[S.peekFirst()] + arr[G.peekFirst()]; return sum; } public static void main(String args[]) { int arr[] = {2, 5, -1, 7, -3, -1, -2} ; int k = 3; System.out.println(SumOfKsubArray(arr, k)); } } //This code is contributed by Gaurav Tiwari
Python
# Python3 program to find Sum of all minimum and maximum # elements Of Sub-array Size k. from collections import deque # Returns Sum of min and max element of all subarrays # of size k def SumOfKsubArray(arr, n , k): Sum = 0 # Initialize result # The queue will store indexes of useful elements # in every window # In deque 'G' we maintain decreasing order of # values from front to rear # In deque 'S' we maintain increasing order of # values from front to rear S = deque() G = deque() # Process first window of size K for i in range(k): # Remove all previous greater elements # that are useless. while ( len(S) > 0 and arr[S[-1]] >= arr[i]): S.pop() # Remove from rear # Remove all previous smaller that are elements # are useless. while ( len(G) > 0 and arr[G[-1]] <= arr[i]): G.pop() # Remove from rear # Add current element at rear of both deque G.append(i) S.append(i) # Process rest of the Array elements for i in range(k, n): # Element at the front of the deque 'G' & 'S' # is the largest and smallest # element of previous window respectively Sum += arr[S[0]] + arr[G[0]] # Remove all elements which are out of this # window while ( len(S) > 0 and S[0] <= i - k): S.popleft() while ( len(G) > 0 and G[0] <= i - k): G.popleft() # remove all previous greater element that are # useless while ( len(S) > 0 and arr[S[-1]] >= arr[i]): S.pop() # Remove from rear # remove all previous smaller that are elements # are useless while ( len(G) > 0 and arr[G[-1]] <= arr[i]): G.pop() # Remove from rear # Add current element at rear of both deque G.append(i) S.append(i) # Sum of minimum and maximum element of last window Sum += arr[S[0]] + arr[G[0]] return Sum # Driver program to test above functions arr=[2, 5, -1, 7, -3, -1, -2] n = len(arr) k = 3 print(SumOfKsubArray(arr, n, k)) # This code is contributed by mohit kumar
C#
// C# program to find sum of all minimum and maximum // elements Of Sub-array Size k. using System; using System.Collections.Generic; class Geeks { // Returns sum of min and max element of all subarrays // of size k public static int SumOfKsubArray(int []arr , int k) { int sum = 0; // Initialize result // The queue will store indexes of useful elements // in every window // In deque 'G' we maintain decreasing order of // values from front to rear // In deque 'S' we maintain increasing order of // values from front to rear List<int> S = new List<int>(); List<int> G = new List<int>(); // Process first window of size K int i = 0; for (i = 0; i < k; i++) { // Remove all previous greater elements // that are useless. while ( S.Count != 0 && arr[S[S.Count - 1]] >= arr[i]) S.RemoveAt(S.Count - 1); // Remove from rear // Remove all previous smaller that are elements // are useless. while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i]) G.RemoveAt(G.Count - 1); // Remove from rear // Add current element at rear of both deque G.Add(i); S.Add(i); } // Process rest of the Array elements for ( ; i < arr.Length; i++ ) { // Element at the front of the deque 'G' & 'S' // is the largest and smallest // element of previous window respectively sum += arr[S[0]] + arr[G[0]]; // Remove all elements which are out of this // window while ( S.Count != 0 && S[0] <= i - k) S.RemoveAt(0); while ( G.Count != 0 && G[0] <= i - k) G.RemoveAt(0); // remove all previous greater element that are // useless while ( S.Count != 0 && arr[S[S.Count-1]] >= arr[i]) S.RemoveAt(S.Count - 1 ); // Remove from rear // remove all previous smaller that are elements // are useless while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i]) G.RemoveAt(G.Count - 1); // Remove from rear // Add current element at rear of both deque G.Add(i); S.Add(i); } // Sum of minimum and maximum element of last window sum += arr[S[0]] + arr[G[0]]; return sum; } // Driver code public static void Main(String []args) { int []arr = {2, 5, -1, 7, -3, -1, -2} ; int k = 3; Console.WriteLine(SumOfKsubArray(arr, k)); } } // This code is contributed by gauravrajput1
Javascript
<script> // JavaScript program to find sum of all minimum and maximum // elements Of Sub-array Size k. // Returns sum of min and max element of all subarrays // of size k function SumOfKsubArray(arr , k) { let sum = 0; // Initialize result // The queue will store indexes of useful elements // in every window // In deque 'G' we maintain decreasing order of // values from front to rear // In deque 'S' we maintain increasing order of // values from front to rear let S = []; let G = []; // Process first window of size K let i = 0; for (i = 0; i < k; i++) { // Remove all previous greater elements // that are useless. while ( S.length != 0 && arr[S[S.length - 1]] >= arr[i]) S.pop(); // Remove from rear // Remove all previous smaller that are elements // are useless. while ( G.length != 0 && arr[G[G.length - 1]] <= arr[i]) G.pop(); // Remove from rear // Add current element at rear of both deque G.push(i); S.push(i); } // Process rest of the Array elements for ( ; i < arr.length; i++ ) { // Element at the front of the deque 'G' & 'S' // is the largest and smallest // element of previous window respectively sum += arr[S[0]] + arr[G[0]]; // Remove all elements which are out of this // window while ( S.length != 0 && S[0] <= i - k) S.shift(0); while ( G.length != 0 && G[0] <= i - k) G.shift(0); // remove all previous greater element that are // useless while ( S.length != 0 && arr[S[S.length-1]] >= arr[i]) S.pop(); // Remove from rear // remove all previous smaller that are elements // are useless while ( G.length != 0 && arr[G[G.length - 1]] <= arr[i]) G.pop(); // Remove from rear // Add current element at rear of both deque G.push(i); S.push(i); } // Sum of minimum and maximum element of last window sum += arr[S[0]] + arr[G[0]]; return sum; } // Driver code let arr = [2, 5, -1, 7, -3, -1, -2]; let k = 3; document.write(SumOfKsubArray(arr, k)); // This code is contributed by _saurabh_jaiswal </script>
14
Complejidad temporal: O(n)
Espacio auxiliar: O(k)
Este artículo es una contribución de Nishant_Singh (Pintu) . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA