Suma de k elementos más grandes en BST – Part 1

Dado un BST , la tarea es encontrar la suma de todos los elementos mayores que e iguales al k-ésimo elemento más grande.

Ejemplos:  

Input : K = 3
              8
            /   \
           7     10
         /      /   \
        2      9     13
Output : 32
Explanation: 3rd largest element is 9 so sum of all
             elements greater than or equal to 9 are
             9 + 10 + 13 = 32.

Input : K = 2
           8
         /   \
        5    11
      /  \
     2    7
      \
       3
Output : 19
Explanation: 2nd largest element is 8 so sum of all
             elements greater than or equal to 8 are
             8 + 11 = 19.

Enfoque: 
la idea es atravesar BST en un recorrido en orden de forma inversa (raíz derecha izquierda). 
Tenga en cuenta que el recorrido en orden de BST accede a los elementos en un orden ordenado (o creciente), por lo tanto, el reverso del recorrido en orden estará en un orden ordenado ( decreciente ). Mientras atraviesa, lleve un registro del conteo de Nodes visitados y siga agregando Nodes hasta que el conteo se convierta en k. 

C++

// C++ program to find Sum Of All Elements larger
// than or equal to Kth Largest Element In BST
#include <bits/stdc++.h>
using namespace std;
 
struct Node {
    int data;
    Node *left, *right;
};
 
// utility function new Node of BST
struct Node* cNode(int data)
{
    Node* node = new Node;
    node->left = NULL;
    node->right = NULL;
    node->data = data;
    return node;
}
 
// A utility function to insert a new Node
// with given key in BST
struct Node* add(Node* root, int key)
{
    // If the tree is empty, return a new Node
    if (root == NULL)
        return cNode(key);
 
    // Otherwise, recur down the tree
    if (root->data > key)
        root->left = add(root->left, key);
 
    else if (root->data < key)
        root->right = add(root->right, key);
 
    // return the (unchanged) Node pointer
    return root;
}
 
// function to return sum of all elements larger than
// and equal to Kth largest element
int klargestElementSumUtil(Node* root, int k, int& c)
{
    // Base cases
    if (root == NULL)
        return 0;
    if (c > k)
        return 0;
 
    // Compute sum of elements in right subtree
    int ans = klargestElementSumUtil(root->right, k, c);
    if (c >= k)
        return ans;
 
    // Add root's data
    ans += root->data;
 
    // Add current Node
    c++;
    if (c >= k)
        return ans;
 
    // If c is less than k, return left subtree Nodes
    return ans + klargestElementSumUtil(root->left, k, c);
}
 
// Wrapper over klargestElementSumRec()
int klargestElementSum(struct Node* root, int k)
{
    int c = 0;
    klargestElementSumUtil(root, k, c);
}
 
// Drivers code
int main()
{
    /*   19
        /    \
       7     21
     /   \
    3     11
         /   \
        9    13
          */
 
    Node* root = NULL;
    root = add(root, 19);
    root = add(root, 7);
    root = add(root, 3);
    root = add(root, 11);
    root = add(root, 9);
    root = add(root, 13);
    root = add(root, 21);
 
    int k = 2;
    cout << klargestElementSum(root, k) << endl;
    return 0;
}

Java

// Java program to find Sum Of All Elements larger
// than or equal to Kth Largest Element In BST
import java.util.*;
 
class GFG
{
 
static class Node
{
    int data;
    Node left, right;
};
static int c;
 
// Utility function new Node of BST
static Node cNode(int data)
{
    Node node = new Node();
    node.left = null;
    node.right = null;
    node.data = data;
    return node;
}
 
// A utility function to insert a new Node
// with given key in BST
static Node add(Node root, int key)
{
    // If the tree is empty, return a new Node
    if (root == null)
        return cNode(key);
 
    // Otherwise, recur down the tree
    if (root.data > key)
        root.left = add(root.left, key);
 
    else if (root.data < key)
        root.right = add(root.right, key);
 
    // return the (unchanged) Node pointer
    return root;
}
 
// function to return sum of all elements larger than
// and equal to Kth largest element
static int klargestElementSumUtil(Node root, int k)
{
    // Base cases
    if (root == null)
        return 0;
    if (c > k)
        return 0;
 
    // Compute sum of elements in right subtree
    int ans = klargestElementSumUtil(root.right, k);
    if (c >= k)
        return ans;
 
    // Add root's data
    ans += root.data;
 
    // Add current Node
    c++;
    if (c >= k)
        return ans;
 
    // If c is less than k, return left subtree Nodes
    return ans + klargestElementSumUtil(root.left, k);
}
 
// Wrapper over klargestElementSumRec()
static int klargestElementSum(Node root, int k)
{
    c = 0;
    return klargestElementSumUtil(root, k);
}
 
// Drivers code
public static void main(String[] args)
{
    /* 19
        / \
    7     21
    / \
    3     11
        / \
        9 13
        */
 
    Node root = null;
    root = add(root, 19);
    root = add(root, 7);
    root = add(root, 3);
    root = add(root, 11);
    root = add(root, 9);
    root = add(root, 13);
    root = add(root, 21);
 
    int k = 2;
    System.out.print(klargestElementSum(root, k) +"\n");
}
}
 
// This code is contributed by PrinciRaj1992

Python3

# Python3 program to find sum of all elements larger
# than or equal to Kth largest element In BST
c = 0
 
class cNode:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
 
# A utility function to insert a new Node
# with given key in BST
def add(root, key):
     
    # If the tree is empty, return a new Node
    if (root == None):
        return cNode(key)
 
    # Otherwise, recur down the tree
    if (root.data > key):
        root.left = add(root.left, key)
 
    elif(root.data < key):
        root.right = add(root.right, key)
 
    # return the (unchanged) Node pointer
    return root
 
# Function to return sum of all elements
# larger than and equal to Kth largest element
def klargestElementSumUtil(root, k):
     
    global c
     
    # Base cases
    if (root == None):
        return 0
    if (c > k):
        return 0
 
    # Compute sum of elements in right subtree
    ans = klargestElementSumUtil(root.right, k)
     
    if (c >= k):
        return ans
 
    # Add root's data
    ans += root.data
 
    # Add current Node
    c += 1
     
    if (c >= k):
        return ans
 
    # If c is less than k, return left subtree Nodes
    return ans + klargestElementSumUtil(root.left, k)
 
# Wrapper over klargestElementSumRec()
def klargestElementSum(root, k):
     
    return klargestElementSumUtil(root, k)
 
# Driver code
if __name__ == '__main__':
     
    '''
    /*    19
        /    \
       7     21
     /   \
    3     11
         /   \
        9    13
          */ '''
    root = None
    root = add(root, 19)
    root = add(root, 7)
    root = add(root, 3)
    root = add(root, 11)
    root = add(root, 9)
    root = add(root, 13)
    root = add(root, 21)
 
    k = 2
     
    print(klargestElementSum(root, k))
     
# This code is contributed by bgangwar59

C#

// C# program to find Sum Of All Elements larger
// than or equal to Kth Largest Element In BST
using System;
 
class GFG
{
 
class Node
{
    public int data;
    public Node left, right;
};
static int c;
 
// Utility function new Node of BST
static Node cNode(int data)
{
    Node node = new Node();
    node.left = null;
    node.right = null;
    node.data = data;
    return node;
}
 
// A utility function to insert a new Node
// with given key in BST
static Node add(Node root, int key)
{
    // If the tree is empty, return a new Node
    if (root == null)
        return cNode(key);
 
    // Otherwise, recur down the tree
    if (root.data > key)
        root.left = add(root.left, key);
 
    else if (root.data < key)
        root.right = add(root.right, key);
 
    // return the (unchanged) Node pointer
    return root;
}
 
// function to return sum of all elements larger than
// and equal to Kth largest element
static int klargestElementSumUtil(Node root, int k)
{
    // Base cases
    if (root == null)
        return 0;
    if (c > k)
        return 0;
 
    // Compute sum of elements in right subtree
    int ans = klargestElementSumUtil(root.right, k);
    if (c >= k)
        return ans;
 
    // Add root's data
    ans += root.data;
 
    // Add current Node
    c++;
    if (c >= k)
        return ans;
 
    // If c is less than k, return left subtree Nodes
    return ans + klargestElementSumUtil(root.left, k);
}
 
// Wrapper over klargestElementSumRec()
static int klargestElementSum(Node root, int k)
{
    c = 0;
    return klargestElementSumUtil(root, k);
}
 
// Drivers code
public static void Main(String[] args)
{
    /* 19
        / \
    7     21
    / \
    3     11
        / \
        9 13
        */
 
    Node root = null;
    root = add(root, 19);
    root = add(root, 7);
    root = add(root, 3);
    root = add(root, 11);
    root = add(root, 9);
    root = add(root, 13);
    root = add(root, 21);
 
    int k = 2;
    Console.Write(klargestElementSum(root, k) +"\n");
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
 
// Javascript program to find Sum
// Of All Elements larger than or
// equal to Kth Largest Element In BST
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
let c;
 
// Utility function new Node of BST
function cNode(data)
{
    let node = new Node(data);
     
    return node;
}
 
// A utility function to insert a new Node
// with given key in BST
function add(root, key)
{
     
    // If the tree is empty, return a new Node
    if (root == null)
        return cNode(key);
 
    // Otherwise, recur down the tree
    if (root.data > key)
        root.left = add(root.left, key);
 
    else if (root.data < key)
        root.right = add(root.right, key);
 
    // Return the (unchanged) Node pointer
    return root;
}
 
// Function to return sum of all elements
// larger than and equal to Kth largest element
function klargestElementSumUtil(root, k)
{
     
    // Base cases
    if (root == null)
        return 0;
    if (c > k)
        return 0;
 
    // Compute sum of elements in right subtree
    let ans = klargestElementSumUtil(root.right, k);
    if (c >= k)
        return ans;
 
    // Add root's data
    ans += root.data;
 
    // Add current Node
    c++;
    if (c >= k)
        return ans;
 
    // If c is less than k, return left subtree Nodes
    return ans + klargestElementSumUtil(root.left, k);
}
 
// Wrapper over klargestElementSumRec()
function klargestElementSum(root, k)
{
    c = 0;
    return klargestElementSumUtil(root, k);
}
 
// Driver code
/* 19
    / \
7     21
/ \
3     11
    / \
    9 13
    */
 
let root = null;
root = add(root, 19);
root = add(root, 7);
root = add(root, 3);
root = add(root, 11);
root = add(root, 9);
root = add(root, 13);
root = add(root, 21);
 
let k = 2;
document.write(
    klargestElementSum(root, k) + "</br>");
     
// This code is contributed by divyeshrabadiya07
 
</script>

Producción: 

40

Publicación traducida automáticamente

Artículo escrito por akash1295 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *