Dado n y un número, la tarea es encontrar la suma de números de n dígitos que son divisibles por el número dado.
Ejemplos:
Input : n = 2, number = 7 Output : 728 There are thirteen n digit numbers that are divisible by 7. Numbers are : 14+ 21 + 28 + 35 + 42 + 49 + 56 + 63 +70 + 77 + 84 + 91 + 98. Input : n = 3, number = 7 Output : 70336 Input : n = 3, number = 4 Output : 124200
Enfoque nativo: atravesar todos los números de n dígitos. Para cada número, verifique la divisibilidad y haga la suma.
C++
// Simple CPP program to sum of n digit // divisible numbers. #include <cmath> #include <iostream> using namespace std; // Returns sum of n digit numbers // divisible by 'number' int totalSumDivisibleByNum(int n, int number) { // compute the first and last term int firstnum = pow(10, n - 1); int lastnum = pow(10, n); // sum of number which having // n digit and divisible by number int sum = 0; for (int i = firstnum; i < lastnum; i++) if (i % number == 0) sum += i; return sum; } // Driver code int main() { int n = 3, num = 7; cout << totalSumDivisibleByNum(n, num) << "\n"; return 0; }
Java
// Simple Java program to sum of n digit // divisible numbers. import java.io.*; class GFG { // Returns sum of n digit numbers // divisible by 'number' static int totalSumDivisibleByNum(int n, int number) { // compute the first and last term int firstnum = (int)Math.pow(10, n - 1); int lastnum = (int)Math.pow(10, n); // sum of number which having // n digit and divisible by number int sum = 0; for (int i = firstnum; i < lastnum; i++) if (i % number == 0) sum += i; return sum; } // Driver code public static void main (String[] args) { int n = 3, num = 7; System.out.println(totalSumDivisibleByNum(n, num)); } } // This code is contributed by Ajit.
Python3
# Simple Python 3 program to sum # of n digit divisible numbers. # Returns sum of n digit numbers # divisible by 'number' def totalSumDivisibleByNum(n, number): # compute the first and last term firstnum = pow(10, n - 1) lastnum = pow(10, n) # sum of number which having # n digit and divisible by number sum = 0 for i in range(firstnum, lastnum): if (i % number == 0): sum += i return sum # Driver code n = 3; num = 7 print(totalSumDivisibleByNum(n, num)) # This code is contributed by Smitha Dinesh Semwal
C#
// Simple C# program to sum of n digit // divisible numbers. using System; class GFG { // Returns sum of n digit numbers // divisible by 'number' static int totalSumDivisibleByNum(int n, int number) { // compute the first and last term int firstnum = (int)Math.Pow(10, n - 1); int lastnum = (int)Math.Pow(10, n); // sum of number which having // n digit and divisible by number int sum = 0; for (int i = firstnum; i < lastnum; i++) if (i % number == 0) sum += i; return sum; } // Driver code public static void Main () { int n = 3, num = 7; Console.WriteLine(totalSumDivisibleByNum(n, num)); } } // This code is contributed by vt_m.
PHP
<?php // Simple PHP program to sum of // n digit divisible numbers. // Returns sum of n digit numbers // divisible by 'number' function totalSumDivisibleByNum($n, $number) { // compute the first and last term $firstnum = pow(10, $n - 1); $lastnum = pow(10, $n); // sum of number which having // n digit and divisible by number $sum = 0; for ($i = $firstnum; $i < $lastnum; $i++) if ($i % $number == 0) $sum += $i; return $sum; } // Driver code $n = 3;$num = 7; echo totalSumDivisibleByNum($n, $num) , "\n"; // This code is contributed by aj_36 ?>
Javascript
<script> // JavaScript program to sum of n digit // divisible numbers. // Returns sum of n digit numbers // divisible by 'number' function totalSumDivisibleByNum(n, number) { // compute the first and last term let firstnum = Math.pow(10, n - 1); let lastnum = Math.pow(10, n); // sum of number which having // n digit and divisible by number let sum = 0; for(let i = firstnum; i < lastnum; i++) if (i % number == 0) sum += i; return sum; } // Driver Code let n = 3, num = 7; document.write(totalSumDivisibleByNum(n, num)); // This code is contributed by chinmoy1997pal </script>
Producción:
70336
Complejidad del tiempo: O(10 n )
Espacio Auxiliar: O(1)
Método eficiente:
Primero, encuentre el conteo de números de n dígitos divisibles por un número dado . Luego aplique la fórmula para la suma de AP .
count/2 * (first-term + last-term)
C++
// Efficient CPP program to find the sum // divisible numbers. #include <cmath> #include <iostream> using namespace std; // find the Sum of having n digit and // divisible by the number int totalSumDivisibleByNum(int digit, int number) { // compute the first and last term int firstnum = pow(10, digit - 1); int lastnum = pow(10, digit); // first number which is divisible // by given number firstnum = (firstnum - firstnum % number) + number; // last number which is divisible // by given number lastnum = (lastnum - lastnum % number); // total divisible number int count = ((lastnum - firstnum) / number + 1); // return the total sum return ((lastnum + firstnum) * count) / 2; } int main() { int n = 3, number = 7; cout << totalSumDivisibleByNum(n, number); return 0; }
Java
// Efficient Java program to find the sum // divisible numbers. import java.io.*; class GFG { // find the Sum of having n digit and // divisible by the number static int totalSumDivisibleByNum(int digit, int number) { // compute the first and last term int firstnum = (int)Math.pow(10, digit - 1); int lastnum = (int)Math.pow(10, digit); // first number which is divisible // by given number firstnum = (firstnum - firstnum % number) + number; // last number which is divisible // by given number lastnum = (lastnum - lastnum % number); // total divisible number int count = ((lastnum - firstnum) / number + 1); // return the total sum return ((lastnum + firstnum) * count) / 2; } // Driver code public static void main (String[] args) { int n = 3, number = 7; System.out.println(totalSumDivisibleByNum(n, number)); } } // This code is contributed by Ajit.
Python3
# Efficient Python3 program to # find the sum divisible numbers. # find the Sum of having n digit # and divisible by the number def totalSumDivisibleByNum(digit, number): # compute the first and last term firstnum = pow(10, digit - 1) lastnum = pow(10, digit) # first number which is divisible # by given number firstnum = (firstnum - firstnum % number) + number # last number which is divisible # by given number lastnum = (lastnum - lastnum % number) # total divisible number count = ((lastnum - firstnum) / number + 1) # return the total sum return int(((lastnum + firstnum) * count) / 2) # Driver code digit = 3; num = 7 print(totalSumDivisibleByNum(digit, num)) # This code is contributed by Smitha Dinesh Semwal
C#
// Efficient Java program to find the sum // divisible numbers. using System; class GFG { // find the Sum of having n digit and // divisible by the number static int totalSumDivisibleByNum(int digit, int number) { // compute the first and last term int firstnum = (int)Math.Pow(10, digit - 1); int lastnum = (int)Math.Pow(10, digit); // first number which is divisible // by given number firstnum = (firstnum - firstnum % number) + number; // last number which is divisible // by given number lastnum = (lastnum - lastnum % number); // total divisible number int count = ((lastnum - firstnum) / number + 1); // return the total sum return ((lastnum + firstnum) * count) / 2; } // Driver code public static void Main () { int n = 3, number = 7; Console.WriteLine(totalSumDivisibleByNum(n, number)); } } // This code is contributed by vt_m.
PHP
<?php // Efficient PHP program to find // the sum divisible numbers. // find the Sum of having n digit and // divisible by the number function totalSumDivisibleByNum($digit, $number) { // compute the first and last term $firstnum = pow(10, $digit - 1); $lastnum = pow(10, $digit); // first number which is divisible // by given number $firstnum = ($firstnum - $firstnum % $number) + $number; // last number which is divisible // by given number $lastnum = ($lastnum - $lastnum % $number); // total divisible number $count = (($lastnum - $firstnum) / $number + 1); // return the total sum return (($lastnum + $firstnum) * $count) / 2; } // Driver Code $n = 3; $number = 7; echo totalSumDivisibleByNum($n, $number); // This code is contributed by anuj_67. ?>
Javascript
<script> // Efficient Javascript program to find // the sum divisible numbers. // Find the Sum of having n digit and // divisible by the number function totalSumDivisibleByNum(digit, number) { // Compute the first and last term let firstnum = Math.pow(10, digit - 1); let lastnum = Math.pow(10, digit); // First number which is divisible // by given number firstnum = (firstnum - firstnum % number) + number; // Last number which is divisible // by given number lastnum = (lastnum - lastnum % number); // Total divisible number let count = ((lastnum - firstnum) / number + 1); // Return the total sum return ((lastnum + firstnum) * count) / 2; } // Driver Code let n = 3, number = 7; document.write(totalSumDivisibleByNum(n, number)); // This code is contributed by divyesh072019 </script>
Producción:
70336
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por DevanshuAgarwal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA