Suma de todos los elementos de frecuencia máxima en Matrix

Dada una array NxM de enteros que contienen elementos duplicados. La tarea es encontrar la suma de todos los elementos máximos que ocurren en la array dada. Esa es la suma de todos esos elementos cuya frecuencia es par en la array.
Ejemplos
 

Input : mat[] = {{1, 1, 1},
                {2, 3, 3},
                {4, 5, 3}}
Output : 12
The max occurring elements are 3 and 1
Therefore, sum = 1 + 1 + 1 + 3 + 3 + 3 = 12

Input : mat[] = {{10, 20},
                 {40, 40}}
Output : 80

Enfoque :
 

  • Atraviese la array y use una tabla hash para almacenar las frecuencias de los elementos de la array de modo que la clave del mapa sea el elemento de la array y el valor sea su frecuencia en la array.
  • Luego recorra el mapa para encontrar la frecuencia máxima.
  • Finalmente, recorra la tabla hash para encontrar la frecuencia de los elementos y verifique si coincide con la frecuencia máxima obtenida en el paso anterior, si es así, luego agregue este elemento por su frecuencia para sumar.

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find sum of all max
// frequency elements in a Matrix
 
#include <bits/stdc++.h>
using namespace std;
 
#define N 3 // Rows
#define M 3 // Columns
 
// Function to find sum of all max
// frequency elements in a Matrix
int sumMaxOccurring(int arr[N][M])
{
    // Store frequencies of elements
    // in matrix
    unordered_map<int, int> mp;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
            mp[arr[i][j]]++;
        }
    }
 
    // loop to iterate through map
    // and find the maximum frequency
    int sum = 0;
    int maxFreq = INT_MIN;
    for (auto itr = mp.begin(); itr != mp.end(); itr++) {
        if (itr->second > maxFreq)
            maxFreq = itr->second;
    }
 
    // Sum of maximum frequency elements
    for (auto itr = mp.begin(); itr != mp.end(); itr++) {       
        if (itr->second == maxFreq) {
            sum += (itr->first) * (itr->second);
        }
    }
 
    return sum;
}
 
// Driver Code
int main()
{
    int mat[N][M] = { { 1, 2, 3 },
                      { 1, 3, 2 },
                      { 1, 5, 6 } };
 
    cout << sumMaxOccurring(mat) << endl;
 
    return 0;
}

Java

// Java program to find sum of all max
// frequency elements in a Matrix
import java.util.*;
 
class GFG
{
 
    static int N = 3; // Rows
    static int M = 3; // Columns
 
    // Function to find sum of all max
    // frequency elements in a Matrix
    static int sumMaxOccurring(int arr[][])
    {
        // Store frequencies of elements
        // in matrix
        Map<Integer, Integer> mp = new HashMap<>();
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < M; j++)
            {
                if (mp.containsKey(arr[i][j]))
                {
                    mp.put(arr[i][j], mp.get(arr[i][j]) + 1);
                }
                else
                {
                    mp.put(arr[i][j], 1);
                }
            }
        }
 
        // loop to iterate through map
        // and find the maximum frequency
        int sum = 0;
        int maxFreq = Integer.MIN_VALUE;
        for (Map.Entry<Integer, Integer> itr : mp.entrySet())
        {
            if (itr.getValue() > maxFreq)
            {
                maxFreq = itr.getValue();
            }
        }
 
        // Sum of maximum frequency elements
        for (Map.Entry<Integer, Integer> itr : mp.entrySet())
        {
            if (itr.getValue() == maxFreq)
            {
                sum += (itr.getKey()) * (itr.getValue());
            }
        }
 
        return sum;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int mat[][] = {{1, 2, 3},
                        {1, 3, 2},
                        {1, 5, 6}};
 
        System.out.println(sumMaxOccurring(mat));
    }
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to find sum of all max
# frequency elements in a Matrix
import sys
 
N = 3 # Rows
M = 3 # Columns
 
# Function to find sum of all max
# frequency elements in a Matrix
def sumMaxOccuring(arr):
 
    # Store frequencies of elements
    # in matrix
    mp = dict()
    for i in range(N):
        for j in range(M):
            if arr[i][j] in mp:
                mp[arr[i][j]] += 1
            else:
                mp[arr[i][j]] = 1
 
    # loop to iterate through map
    # and find the maximum frequency
    s = 0
    maxFreq = -sys.maxsize
    for i in mp:
        if mp[i] > maxFreq:
            maxFreq = mp[i]
 
    # Sum of maximum frequency elements
    for i in mp:
        if mp[i] == maxFreq:
            s += i * mp[i]
 
    return s
 
# Driver code
if __name__ == "__main__":
    mat = [[1, 2, 3],
           [1, 3, 2],
           [1, 5, 6]]
 
    print(sumMaxOccuring(mat))
 
# This code is contributed by
# sanjeev2552

C#

// C# program to find sum of all max
// frequency elements in a Matrix
using System;
using System.Collections.Generic;   
public class GFG
{
  
    static int N = 3; // Rows
    static int M = 3; // Columns
  
    // Function to find sum of all max
    // frequency elements in a Matrix
    static int sumMaxOccurring(int [,]arr)
    {
        // Store frequencies of elements
        // in matrix
        Dictionary<int,int> mp = new Dictionary<int,int>();
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < M; j++)
            {
                if (mp.ContainsKey(arr[i,j]))
                {
                    var v= mp[arr[i,j]];
                    mp.Remove(arr[i,j]);
                    mp.Add(arr[i,j], v + 1);
                }
                else
                {
                    mp.Add(arr[i,j], 1);
                }
            }
        }
  
        // loop to iterate through map
        // and find the maximum frequency
        int sum = 0;
        int maxFreq = int.MinValue;
        foreach(KeyValuePair<int, int> itr in mp)
        {
            if (itr.Value > maxFreq)
            {
                maxFreq = itr.Value;
            }
        }
  
        // Sum of maximum frequency elements
        foreach(KeyValuePair<int, int> itr in mp)
        {
            if (itr.Value == maxFreq)
            {
                sum += (itr.Key) * (itr.Value);
            }
        }
  
        return sum;
    }
  
    // Driver Code
    public static void Main(String[] args)
    {
        int [,]mat = {{1, 2, 3},
                        {1, 3, 2},
                        {1, 5, 6}};
  
        Console.WriteLine(sumMaxOccurring(mat));
    }
}
// This code contributed by Rajput-Ji

Javascript

<script>
 
// JavaScript program to find sum of all max
// frequency elements in a Matrix
 
var N = 3; // Rows
var M = 3; // Columns
 
// Function to find sum of all max
// frequency elements in a Matrix
function sumMaxOccurring(arr)
{
    // Store frequencies of elements
    // in matrix
    var mp = new Map();
    for (var i = 0; i < N; i++)
    {
        for (var j = 0; j < M; j++)
        {
            if (mp.has(arr[i][j]))
            {
                var v= mp.get(arr[i][j]);
                mp.delete(arr[i][j]);
                mp.set(arr[i][j], v + 1);
            }
            else
            {
                mp.set(arr[i][j], 1);
            }
        }
    }
 
    // loop to iterate through map
    // and find the maximum frequency
    var sum = 0;
    var maxFreq = -1000000000;
 
    mp.forEach((value, key) => {
        if (value > maxFreq)
        {
            maxFreq = value;
        }
    });
 
    // Sum of maximum frequency elements
    mp.forEach((value, key) => {
         
        if (value == maxFreq)
        {
            sum += (key) * (value);
        }
    });
 
    return sum;
}
 
// Driver Code
var mat = [[1, 2, 3],
                [1, 3, 2],
                [1, 5, 6]];
document.write(sumMaxOccurring(mat));
 
 
</script>
Producción: 

3

 

Publicación traducida automáticamente

Artículo escrito por barykrg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *