Dada una array NxM de enteros que contienen elementos duplicados. La tarea es encontrar la suma de todos los elementos máximos que ocurren en la array dada. Esa es la suma de todos esos elementos cuya frecuencia es par en la array.
Ejemplos :
Input : mat[] = {{1, 1, 1}, {2, 3, 3}, {4, 5, 3}} Output : 12 The max occurring elements are 3 and 1 Therefore, sum = 1 + 1 + 1 + 3 + 3 + 3 = 12 Input : mat[] = {{10, 20}, {40, 40}} Output : 80
Enfoque :
- Atraviese la array y use una tabla hash para almacenar las frecuencias de los elementos de la array de modo que la clave del mapa sea el elemento de la array y el valor sea su frecuencia en la array.
- Luego recorra el mapa para encontrar la frecuencia máxima.
- Finalmente, recorra la tabla hash para encontrar la frecuencia de los elementos y verifique si coincide con la frecuencia máxima obtenida en el paso anterior, si es así, luego agregue este elemento por su frecuencia para sumar.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find sum of all max // frequency elements in a Matrix #include <bits/stdc++.h> using namespace std; #define N 3 // Rows #define M 3 // Columns // Function to find sum of all max // frequency elements in a Matrix int sumMaxOccurring(int arr[N][M]) { // Store frequencies of elements // in matrix unordered_map<int, int> mp; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { mp[arr[i][j]]++; } } // loop to iterate through map // and find the maximum frequency int sum = 0; int maxFreq = INT_MIN; for (auto itr = mp.begin(); itr != mp.end(); itr++) { if (itr->second > maxFreq) maxFreq = itr->second; } // Sum of maximum frequency elements for (auto itr = mp.begin(); itr != mp.end(); itr++) { if (itr->second == maxFreq) { sum += (itr->first) * (itr->second); } } return sum; } // Driver Code int main() { int mat[N][M] = { { 1, 2, 3 }, { 1, 3, 2 }, { 1, 5, 6 } }; cout << sumMaxOccurring(mat) << endl; return 0; }
Java
// Java program to find sum of all max // frequency elements in a Matrix import java.util.*; class GFG { static int N = 3; // Rows static int M = 3; // Columns // Function to find sum of all max // frequency elements in a Matrix static int sumMaxOccurring(int arr[][]) { // Store frequencies of elements // in matrix Map<Integer, Integer> mp = new HashMap<>(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (mp.containsKey(arr[i][j])) { mp.put(arr[i][j], mp.get(arr[i][j]) + 1); } else { mp.put(arr[i][j], 1); } } } // loop to iterate through map // and find the maximum frequency int sum = 0; int maxFreq = Integer.MIN_VALUE; for (Map.Entry<Integer, Integer> itr : mp.entrySet()) { if (itr.getValue() > maxFreq) { maxFreq = itr.getValue(); } } // Sum of maximum frequency elements for (Map.Entry<Integer, Integer> itr : mp.entrySet()) { if (itr.getValue() == maxFreq) { sum += (itr.getKey()) * (itr.getValue()); } } return sum; } // Driver Code public static void main(String[] args) { int mat[][] = {{1, 2, 3}, {1, 3, 2}, {1, 5, 6}}; System.out.println(sumMaxOccurring(mat)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program to find sum of all max # frequency elements in a Matrix import sys N = 3 # Rows M = 3 # Columns # Function to find sum of all max # frequency elements in a Matrix def sumMaxOccuring(arr): # Store frequencies of elements # in matrix mp = dict() for i in range(N): for j in range(M): if arr[i][j] in mp: mp[arr[i][j]] += 1 else: mp[arr[i][j]] = 1 # loop to iterate through map # and find the maximum frequency s = 0 maxFreq = -sys.maxsize for i in mp: if mp[i] > maxFreq: maxFreq = mp[i] # Sum of maximum frequency elements for i in mp: if mp[i] == maxFreq: s += i * mp[i] return s # Driver code if __name__ == "__main__": mat = [[1, 2, 3], [1, 3, 2], [1, 5, 6]] print(sumMaxOccuring(mat)) # This code is contributed by # sanjeev2552
C#
// C# program to find sum of all max // frequency elements in a Matrix using System; using System.Collections.Generic; public class GFG { static int N = 3; // Rows static int M = 3; // Columns // Function to find sum of all max // frequency elements in a Matrix static int sumMaxOccurring(int [,]arr) { // Store frequencies of elements // in matrix Dictionary<int,int> mp = new Dictionary<int,int>(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (mp.ContainsKey(arr[i,j])) { var v= mp[arr[i,j]]; mp.Remove(arr[i,j]); mp.Add(arr[i,j], v + 1); } else { mp.Add(arr[i,j], 1); } } } // loop to iterate through map // and find the maximum frequency int sum = 0; int maxFreq = int.MinValue; foreach(KeyValuePair<int, int> itr in mp) { if (itr.Value > maxFreq) { maxFreq = itr.Value; } } // Sum of maximum frequency elements foreach(KeyValuePair<int, int> itr in mp) { if (itr.Value == maxFreq) { sum += (itr.Key) * (itr.Value); } } return sum; } // Driver Code public static void Main(String[] args) { int [,]mat = {{1, 2, 3}, {1, 3, 2}, {1, 5, 6}}; Console.WriteLine(sumMaxOccurring(mat)); } } // This code contributed by Rajput-Ji
Javascript
<script> // JavaScript program to find sum of all max // frequency elements in a Matrix var N = 3; // Rows var M = 3; // Columns // Function to find sum of all max // frequency elements in a Matrix function sumMaxOccurring(arr) { // Store frequencies of elements // in matrix var mp = new Map(); for (var i = 0; i < N; i++) { for (var j = 0; j < M; j++) { if (mp.has(arr[i][j])) { var v= mp.get(arr[i][j]); mp.delete(arr[i][j]); mp.set(arr[i][j], v + 1); } else { mp.set(arr[i][j], 1); } } } // loop to iterate through map // and find the maximum frequency var sum = 0; var maxFreq = -1000000000; mp.forEach((value, key) => { if (value > maxFreq) { maxFreq = value; } }); // Sum of maximum frequency elements mp.forEach((value, key) => { if (value == maxFreq) { sum += (key) * (value); } }); return sum; } // Driver Code var mat = [[1, 2, 3], [1, 3, 2], [1, 5, 6]]; document.write(sumMaxOccurring(mat)); </script>
Producción:
3