Dada una array NxM de enteros que contienen elementos duplicados. La tarea es encontrar la suma de todos los elementos mínimos que ocurren en la array dada. Esa es la suma de todos esos elementos cuya frecuencia es par en la array.
Ejemplos :
Input : mat[] = {{1, 1, 2}, {2, 3, 3}, {4, 5, 3}} Output : 9 The min occurring elements are 4, 5 and they occurs only 1 time. Therefore, sum = 4+5 = 9 Input : mat[] = {{10, 20}, {40, 40}} Output : 30
Enfoque :
- Atraviese la array y use un mapa en C++ para almacenar la frecuencia de los elementos de la array de modo que la clave del mapa sea el elemento de la array y el valor sea su frecuencia en la array.
- Luego recorra el mapa para encontrar la frecuencia mínima.
- Finalmente, recorra el mapa para encontrar la frecuencia de los elementos y verifique si coincide con la frecuencia mínima obtenida en el paso anterior, si es así, luego agregue este elemento por su frecuencia para sumar.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find sum of all min // frequency elements in a Matrix #include <bits/stdc++.h> using namespace std; #define N 3 // Rows #define M 3 // Columns // Function to find sum of all min // frequency elements in a Matrix int sumMinOccurring(int arr[N][M]) { // Store frequencies of elements // in matrix map<int, int> mp; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { mp[arr[i][j]]++; } } // Find minimum frequency int sum = 0; int minFreq = INT_MAX; for (auto itr = mp.begin(); itr != mp.end(); itr++) { if (itr->second < minFreq) minFreq = itr->second; } // Sum of minimum frequency elements for (auto itr = mp.begin(); itr != mp.end(); itr++) { if (itr->second == minFreq) { sum += (itr->first) * (itr->second); } } return sum; } // Driver Code int main() { int mat[N][M] = { { 1, 2, 3 }, { 1, 3, 2 }, { 1, 5, 6 } }; cout << sumMinOccurring(mat) << endl; return 0; }
Java
// Java program to find sum of all min // frequency elements in a Matrix import java.util.HashMap; import java.util.Iterator; class GFG { static int N = 3; // Rows static int M = 3; // Columns // Function to find sum of all min // frequency elements in a Matrix public static int sumMinOccuring(int[][] arr) { // Store frequencies of elements // in matrix HashMap<Integer, Integer> mp = new HashMap<>(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (mp.containsKey(arr[i][j])) { int x = mp.get(arr[i][j]); mp.put(arr[i][j], x + 1); } else mp.put(arr[i][j], 1); } } // Find minimum frequency int sum = 0; int minFreq = Integer.MAX_VALUE; for (HashMap.Entry<Integer, Integer> entry : mp.entrySet()) { if (entry.getValue() < minFreq) minFreq = entry.getValue(); } // Sum of minimum frequency elements for (HashMap.Entry<Integer, Integer> entry : mp.entrySet()) { if (entry.getValue() == minFreq) sum += entry.getKey() * entry.getValue(); } return sum; } // Driver code public static void main(String[] args) { int[][] mat = { { 1, 2, 3 }, { 1, 3, 2 }, { 1, 5, 6 } }; System.out.println(sumMinOccuring(mat)); } } // This code is contributed by // sanjeev2552
Python3
# Python3 program to find sum of all min # frequency elements in a Matrix import sys import math # Store frequencies of elements # in matrix def sumMinOccuring(mat): n,m=len(mat),len(mat[0]) _map={} for i in range(n): for j in range(m): d=mat[i][j] if d in _map: _map[d]=_map.get(d)+1 else: _map[d]=1 # Find minimum frequency _sum,minFreq=0,sys.maxsize for i in _map: minFreq=min(minFreq,_map.get(i)) # Sum of minimum frequency elements for i in range(n): for j in range(m): if _map.get(mat[i][j])==minFreq: _sum+=mat[i][j] return _sum # Driver Code if __name__=='__main__': mat=[[1,2,3],[1,3,2],[1,5,6]] print(sumMinOccuring(mat)) # This code is Contributed by Vikash Kumar 37
C#
// C# program to find sum of all min // frequency elements in a Matrix using System; using System.Collections.Generic; class GFG { static int N = 3; // Rows static int M = 3; // Columns // Function to find sum of all min // frequency elements in a Matrix public static int sumMinOccuring(int[,] arr) { // Store frequencies of elements // in matrix Dictionary<int, int> mp = new Dictionary<int, int>(); for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if (mp.ContainsKey(arr[i, j])) { int x = mp[arr[i, j]]; mp[arr[i, j]] = x + 1; } else mp[arr[i, j]] = 1; } } // Find minimum frequency int sum = 0; int minFreq = 10000009; foreach(KeyValuePair<int, int> ele1 in mp) { if(ele1.Value < minFreq) minFreq = ele1.Value; } // Sum of minimum frequency elements foreach(KeyValuePair<int, int> ele1 in mp) { if (ele1.Value == minFreq) sum += ele1.Key * ele1.Value; } return sum; } // Driver code public static void Main() { int[,] mat = new int[3, 3] {{ 1, 2, 3 }, { 1, 3, 2 }, { 1, 5, 6 }}; Console.Write(sumMinOccuring(mat)); } } // This code is contributed by // Mohit kumar
Javascript
<script> // JavaScript program to find sum of all min // frequency elements in a Matrix let N = 3; // Rows let M = 3; // Columns // Function to find sum of all min // frequency elements in a Matrix function sumMinOccuring(arr) { // Store frequencies of elements // in matrix let mp = new Map(); for (let i = 0; i < N; i++) { for (let j = 0; j < M; j++) { if (mp.has(arr[i][j])) { let x = mp.get(arr[i][j]); mp.set(arr[i][j], x + 1); } else mp.set(arr[i][j], 1); } } // Find minimum frequency let sum = 0; let minFreq = Number.MAX_VALUE; for (let [key, value] of mp.entries()) { if (value < minFreq) minFreq = value; } // Sum of minimum frequency elements for (let [key, value] of mp.entries()) { if (value == minFreq) sum += key * value; } return sum; } // Driver code let mat=[[1,2,3],[1,3,2],[1,5,6]]; document.write(sumMinOccuring(mat)); // This code is contributed by patel2127 </script>
Producción:
11
Complejidad de tiempo: O(M x N)
Espacio auxiliar: O(M x N)