Dada una array arr[] de longitud N, la tarea es encontrar la suma de los elementos máximos de cada subarreglo posible de la array.
Ejemplos:
Input : arr[] = {1, 3, 1, 7} Output : 42 Max of all sub-arrays: {1} - 1 {1, 3} - 3 {1, 3, 1} - 3 {1, 3, 1, 7} - 7 {3} - 3 {3, 1} - 3 {3, 1, 7} - 7 {1} - 1 {1, 7} - 7 {7} - 7 1 + 3 + 3 + 7 + 3 + 3 + 7 + 1 + 7 + 7 = 42 Input : arr[] = {1, 1, 1, 1, 1} Output : 15
Ya hemos discutido un enfoque O(N) usando stack para este problema en este artículo .
Enfoque:
en este artículo, aprenderemos cómo resolver este problema usando divide y vencerás .
Supongamos que el elemento en el i -ésimo índice es el más grande de todos. Para cualquier subarreglo que contenga el índice ‘i’, el elemento en ‘i’ siempre será el máximo en el subarreglo.
Si el elemento en el i -ésimo índice es el más grande, podemos decir con seguridad que ese elemento en el i-ésimo índice será el más grande en los subarreglos (i+1)*(Ni). Entonces, su contribución total será arr[i]*(i+1)*(Ni). Ahora, dividiremos la array en dos partes, (0, i-1) y (i+1, N-1) y aplicaremos los mismos algoritmos a ambas por separado.
Entonces nuestra relación general de recurrencia será:
maxSumSubarray(arr, l, r) = arr[i]*(r-i+1)*(i-l+1) + maxSumSubarray(arr, l, i-1) + maxSumSubarray(arr, i+1, r) where i is index of maximum element in range [l, r].
Ahora, necesitamos una forma de responder de manera eficiente a las consultas rangeMax(). El árbol de segmentos será una forma eficiente de responder a esta consulta. Tendremos que responder a esta consulta como máximo N veces. Por lo tanto, la complejidad temporal de nuestro algoritmo divide y vencerás será O(Nlog(N)).
Si tenemos que responder el problema «Suma del mínimo de todos los subarreglos», entonces usaremos el árbol de segmentos para responder las consultas rangeMin(). Para esto, puede pasar por el rango mínimo del árbol del segmento del artículo .
A continuación se muestra el código de implementación:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> #define seg_max 51 using namespace std; // Array to store segment tree. // In first we will store the maximum // of a range // In second, we will store index of // that range pair<int, int> seg_tree[seg_max]; // Size of array declared global // to maintain simplicity in code int n; // Function to build segment tree pair<int, int> buildMaxTree(int l, int r, int i, int arr[]) { // Base case if (l == r) { seg_tree[i] = { arr[l], l }; return seg_tree[i]; } // Finding the maximum among left and right child seg_tree[i] = max(buildMaxTree(l, (l + r) / 2, 2 * i + 1, arr), buildMaxTree((l + r) / 2 + 1, r, 2 * i + 2, arr)); // Returning the maximum to parent return seg_tree[i]; } // Function to perform range-max query in segment tree pair<int, int> rangeMax(int l, int r, int arr[], int i = 0, int sl = 0, int sr = n - 1) { // Base cases if (sr < l || sl > r) return { INT_MIN, -1 }; if (sl >= l and sr <= r) return seg_tree[i]; // Finding the maximum among left and right child return max(rangeMax(l, r, arr, 2 * i + 1, sl, (sl + sr) / 2), rangeMax(l, r, arr, 2 * i + 2, (sl + sr) / 2 + 1, sr)); } // Function to find maximum sum subarray int maxSumSubarray(int arr[], int l = 0, int r = n - 1) { // base case if (l > r) return 0; // range-max query to determine // largest in the range. pair<int, int> a = rangeMax(l, r, arr); // divide the array in two parts return a.first * (r - a.second + 1) * (a.second - l + 1) + maxSumSubarray(arr, l, a.second - 1) + maxSumSubarray(arr, a.second + 1, r); } // Driver Code int main() { // Input array int arr[] = { 1, 3, 1, 7 }; // Size of array n = sizeof(arr) / sizeof(int); // Builind the segment-tree buildMaxTree(0, n - 1, 0, arr); cout << maxSumSubarray(arr); return 0; }
Java
// Java implementation of the above approach class GFG { static class pair { int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static final int seg_max = 51; // Array to store segment tree. // In first we will store the maximum // of a range // In second, we will store index of // that range static pair[] seg_tree = new pair[seg_max]; // Size of array declared global // to maintain simplicity in code static int n; // Function to build segment tree static pair buildMaxTree(int l, int r, int i, int arr[]) { // Base case if (l == r) { seg_tree[i] = new pair(arr[l], l); return seg_tree[i]; } // Finding the maximum among left and right child seg_tree[i] = max(buildMaxTree(l, (l + r) / 2, 2 * i + 1, arr), buildMaxTree((l + r) / 2 + 1, r, 2 * i + 2, arr)); // Returning the maximum to parent return seg_tree[i]; } // Function to perform range-max query in segment tree static pair rangeMax(int l, int r, int arr[], int i, int sl, int sr) { // Base cases if (sr < l || sl > r) return new pair(Integer.MIN_VALUE, -1); if (sl >= l && sr <= r) return seg_tree[i]; // Finding the maximum among left and right child return max(rangeMax(l, r, arr, 2 * i + 1, sl, (sl + sr) / 2), rangeMax(l, r, arr, 2 * i + 2, (sl + sr) / 2 + 1, sr)); } static pair max(pair f, pair s) { if (f.first > s.first) return f; else return s; } // Function to find maximum sum subarray static int maxSumSubarray(int arr[], int l, int r) { // base case if (l > r) return 0; // range-max query to determine // largest in the range. pair a = rangeMax(l, r, arr, 0, 0, n - 1); // divide the array in two parts return a.first * (r - a.second + 1) * (a.second - l + 1) + maxSumSubarray(arr, l, a.second - 1) + maxSumSubarray(arr, a.second + 1, r); } // Driver Code public static void main(String[] args) { // Input array int arr[] = { 1, 3, 1, 7 }; // Size of array n = arr.length; // Builind the segment-tree buildMaxTree(0, n - 1, 0, arr); System.out.print(maxSumSubarray(arr, 0, n - 1)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the above approach import sys seg_max = 51 # Array to store segment tree. # In first we will store the maximum # of a range # In second, we will store index of # that range seg_tree = [[] for i in range(seg_max)] # Function to build segment tree def buildMaxTree(l, r, i, arr): global n, seg_tree, seg_max # Base case if l == r: seg_tree[i] = [arr[l], l] return seg_tree[i] # Finding the maximum among left and right child seg_tree[i] = max(buildMaxTree(l, int((l + r) / 2), 2 * i + 1, arr), buildMaxTree(int((l + r) / 2) + 1, r, 2 * i + 2, arr)) # Returning the maximum to parent return seg_tree[i] # Function to perform range-max query in segment tree def rangeMax(l, r, arr, i, sl, sr): global n, seg_tree, seg_max # Base cases if sr < l or sl > r: return [-sys.maxsize, -1] if sl >= l and sr <= r: return seg_tree[i] # Finding the maximum among left and right child return max(rangeMax(l, r, arr, 2 * i + 1, sl, int((sl + sr) / 2)), rangeMax(l, r, arr, 2 * i + 2, int((sl + sr) / 2) + 1, sr)) def Max(f, s): if f[0] > s[0]: return f else: return s # Function to find maximum sum subarray def maxSumSubarray(arr, l, r): # base case if l > r: return 0 # range-max query to determine # largest in the range. a = rangeMax(l, r, arr, 0, 0, n - 1) # divide the array in two parts return a[0] * (r - a[1] + 1) * (a[1] - l + 1) + maxSumSubarray(arr, l, a[1] - 1) + maxSumSubarray(arr, a[1] + 1, r) # Input array arr = [ 1, 3, 1, 7 ] # Size of array n = len(arr) # Builind the segment-tree buildMaxTree(0, n - 1, 0, arr) print(maxSumSubarray(arr, 0, n - 1)) # This code is contributed by decode2207.
C#
// C# implementation of the above approach using System; class GFG { class pair { public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } static readonly int seg_max = 51; // Array to store segment tree. // In first we will store the maximum // of a range // In second, we will store index of // that range static pair[] seg_tree = new pair[seg_max]; // Size of array declared global // to maintain simplicity in code static int n; // Function to build segment tree static pair buildMaxTree(int l, int r, int i, int []arr) { // Base case if (l == r) { seg_tree[i] = new pair(arr[l], l); return seg_tree[i]; } // Finding the maximum among left and right child seg_tree[i] = max(buildMaxTree(l, (l + r) / 2, 2 * i + 1, arr), buildMaxTree((l + r) / 2 + 1, r, 2 * i + 2, arr)); // Returning the maximum to parent return seg_tree[i]; } // Function to perform range-max query in segment tree static pair rangeMax(int l, int r, int []arr, int i, int sl, int sr) { // Base cases if (sr < l || sl > r) return new pair(int.MinValue, -1); if (sl >= l && sr <= r) return seg_tree[i]; // Finding the maximum among left and right child return max(rangeMax(l, r, arr, 2 * i + 1, sl, (sl + sr) / 2), rangeMax(l, r, arr, 2 * i + 2, (sl + sr) / 2 + 1, sr)); } static pair max(pair f, pair s) { if (f.first > s.first) return f; else return s; } // Function to find maximum sum subarray static int maxSumSubarray(int []arr, int l, int r) { // base case if (l > r) return 0; // range-max query to determine // largest in the range. pair a = rangeMax(l, r, arr, 0, 0, n - 1); // divide the array in two parts return a.first * (r - a.second + 1) * (a.second - l + 1) + maxSumSubarray(arr, l, a.second - 1) + maxSumSubarray(arr, a.second + 1, r); } // Driver Code public static void Main(String[] args) { // Input array int []arr = { 1, 3, 1, 7 }; // Size of array n = arr.Length; // Builind the segment-tree buildMaxTree(0, n - 1, 0, arr); Console.Write(maxSumSubarray(arr, 0, n - 1)); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript implementation of the above approach class pair { constructor(first,second) { this.first = first; this.second = second; } } let seg_max = 51; // Array to store segment tree. // In first we will store the maximum // of a range // In second, we will store index of // that range let seg_tree = new Array(seg_max); // Size of array declared global // to maintain simplicity in code let n; // Function to build segment tree function buildMaxTree(l,r,i,arr) { // Base case if (l == r) { seg_tree[i] = new pair(arr[l], l); return seg_tree[i]; } // Finding the maximum among left and right child seg_tree[i] = max(buildMaxTree(l, Math.floor((l + r) / 2), 2 * i + 1, arr), buildMaxTree(Math.floor((l + r) / 2) + 1, r, 2 * i + 2, arr)); // Returning the maximum to parent return seg_tree[i]; } // Function to perform range-max query in segment tree function rangeMax(l,r,arr,i,sl,sr) { // Base cases if (sr < l || sl > r) return new pair(Number.MIN_VALUE, -1); if (sl >= l && sr <= r) return seg_tree[i]; // Finding the maximum among left and right child return max(rangeMax(l, r, arr, 2 * i + 1, sl, Math.floor((sl + sr) / 2)), rangeMax(l, r, arr, 2 * i + 2, Math.floor((sl + sr) / 2) + 1, sr)); } function max(f,s) { if (f.first > s.first) return f; else return s; } // Function to find maximum sum subarray function maxSumSubarray(arr,l,r) { // base case if (l > r) return 0; // range-max query to determine // largest in the range. let a = rangeMax(l, r, arr, 0, 0, n - 1); // divide the array in two parts return a.first * (r - a.second + 1) * (a.second - l + 1) + maxSumSubarray(arr, l, a.second - 1) + maxSumSubarray(arr, a.second + 1, r); } // Driver Code // Input array let arr = [ 1, 3, 1, 7 ]; // Size of array n = arr.length; // Builind the segment-tree buildMaxTree(0, n - 1, 0, arr); document.write(maxSumSubarray(arr, 0, n - 1)); // This code is contributed by rag2127 </script>
42
Complejidad del tiempo : O(Nlog(N))
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA