Dado un árbol N-ario que consta de Nodes valorados [1, N] y un valor de array [] , donde cada Node i está asociado con valor [i] , la tarea es encontrar la suma máxima de todos los valores de Node de todos los niveles del Árbol N-ario .
Ejemplos:
Entrada: N = 8, Bordes[][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}, {3, 6}, {6, 7}}, Valor[] = {4, 2, 3, -5, -1, 3, -2, 6}
Salida: 6
Explicación:
La suma de todos los Nodes del nivel 0 es 4 La
suma de todos los Nodes del 1er nivel es 0
La suma de todos los Nodes del 3er nivel es 0.
La suma de todos los Nodes del 4to nivel es 6.
Por lo tanto, la suma máxima de cualquier nivel del árbol es 6.Entrada: N = 10, Bordes[][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}, {3, 6}, {6, 7}, {6, 8}, {6, 9}}, Valor[] = {1, 2, -1, 3, 4, 5, 8, 6, 12, 7}
Salida: 25
Enfoque: este problema se puede resolver utilizando el orden transversal de nivel . Mientras realiza el recorrido, procese los Nodes de diferentes niveles por separado. Para cada nivel que se procesa, calcule la suma de Nodes en ese nivel y realice un seguimiento de la suma máxima. Sigue los pasos:
- Almacene todos los Nodes secundarios en el nivel actual en la cola y luego cuente la suma total de Nodes en el nivel actual después de que se complete el recorrido del orden de niveles para un nivel en particular.
- Dado que la cola ahora contiene todos los Nodes del siguiente nivel, la suma total de Nodes en el siguiente nivel se puede calcular fácilmente recorriendo la cola.
- Siga el mismo procedimiento para los niveles sucesivos y actualice la suma máxima de Nodes encontrados en cada nivel.
- Después de los pasos anteriores, imprima la suma máxima de valores almacenados.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum sum // a level in N-ary treeusing BFS int maxLevelSum(int N, int M, vector<int> Value, int Edges[][2]) { // Stores the edges of the graph vector<int> adj[N]; // Create Adjacency list for (int i = 0; i < M; i++) { adj[Edges[i][0]].push_back( Edges[i][1]); } // Initialize result int result = Value[0]; // Stores the nodes of each level queue<int> q; // Insert root q.push(0); // Perform level order traversal while (!q.empty()) { // Count of nodes of the // current level int count = q.size(); int sum = 0; // Traverse the current level while (count--) { // Dequeue a node from queue int temp = q.front(); q.pop(); // Update sum of current level sum = sum + Value[temp]; // Enqueue the children of // dequeued node for (int i = 0; i < adj[temp].size(); i++) { q.push(adj[temp][i]); } } // Update maximum level sum result = max(sum, result); } // Return the result return result; } // Driver Code int main() { // Number of nodes int N = 10; // Edges of the N-ary tree int Edges[][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 4 }, { 1, 5 }, { 3, 6 }, { 6, 7 }, { 6, 8 }, { 6, 9 } }; // Given cost vector<int> Value = { 1, 2, -1, 3, 4, 5, 8, 6, 12, 7 }; // Function call cout << maxLevelSum(N, N - 1, Value, Edges); return 0; }
Java
// Java program for the above approach import java.util.ArrayList; import java.util.LinkedList; import java.util.Queue; class GFG{ // Function to find the maximum sum // a level in N-ary treeusing BFS @SuppressWarnings("unchecked") static int maxLevelSum(int N, int M, int[] Value, int Edges[][]) { // Stores the edges of the graph ArrayList<Integer>[] adj = new ArrayList[N]; for(int i = 0; i < N; i++) { adj[i] = new ArrayList<>(); } // Create Adjacency list for(int i = 0; i < M; i++) { adj[Edges[i][0]].add(Edges[i][1]); } // Initialize result int result = Value[0]; // Stores the nodes of each level Queue<Integer> q = new LinkedList<>(); // Insert root q.add(0); // Perform level order traversal while (!q.isEmpty()) { // Count of nodes of the // current level int count = q.size(); int sum = 0; // Traverse the current level while (count-- > 0) { // Dequeue a node from queue int temp = q.poll(); // Update sum of current level sum = sum + Value[temp]; // Enqueue the children of // dequeued node for(int i = 0; i < adj[temp].size(); i++) { q.add(adj[temp].get(i)); } } // Update maximum level sum result = Math.max(sum, result); } // Return the result return result; } // Driver Code public static void main(String[] args) { // Number of nodes int N = 10; // Edges of the N-ary tree int[][] Edges = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 4 }, { 1, 5 }, { 3, 6 }, { 6, 7 }, { 6, 8 }, { 6, 9 } }; // Given cost int[] Value = { 1, 2, -1, 3, 4, 5, 8, 6, 12, 7 }; // Function call System.out.println(maxLevelSum(N, N - 1, Value, Edges)); } } // This code is contributed by sanjeev2552
Python3
# Python3 program for the above approach from collections import deque # Function to find the maximum sum # a level in N-ary treeusing BFS def maxLevelSum(N, M, Value, Edges): # Stores the edges of the graph adj = [[] for i in range(N)] # Create Adjacency list for i in range(M): adj[Edges[i][0]].append(Edges[i][1]) # Initialize result result = Value[0] # Stores the nodes of each level q = deque() # Insert root q.append(0) # Perform level order traversal while (len(q) > 0): # Count of nodes of the # current level count = len(q) sum = 0 # Traverse the current level while (count): # Dequeue a node from queue temp = q.popleft() # Update sum of current level sum = sum + Value[temp] # Enqueue the children of # dequeued node for i in range(len(adj[temp])): q.append(adj[temp][i]) count -= 1 # Update maximum level sum result = max(sum, result) # Return the result return result # Driver Code if __name__ == '__main__': # Number of nodes N = 10 # Edges of the N-ary tree Edges = [ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 4 ], [ 1, 5 ], [ 3, 6 ], [ 6, 7 ], [ 6, 8 ], [ 6, 9 ] ] # Given cost Value = [ 1, 2, -1, 3, 4, 5, 8, 6, 12, 7 ] # Function call print(maxLevelSum(N, N - 1, Value, Edges)) # This code is contributed by mohit kumar 29
C#
// C# program for the // above approach using System; using System.Collections.Generic; class GFG{ // Function to find the maximum sum // a level in N-ary treeusing BFS static int maxLevelSum(int N, int M, int[] Value, int [,]Edges) { // Stores the edges of the graph List<int>[] adj = new List<int>[N]; for(int i = 0; i < N; i++) { adj[i] = new List<int>(); } // Create Adjacency list for(int i = 0; i < M; i++) { adj[Edges[i, 0]].Add(Edges[i, 1]); } // Initialize result int result = Value[0]; // Stores the nodes of each level Queue<int> q = new Queue<int>(); // Insert root q.Enqueue(0); // Perform level order // traversal while (q.Count != 0) { // Count of nodes of the // current level int count = q.Count; int sum = 0; // Traverse the current // level while (count-- > 0) { // Dequeue a node from // queue int temp = q.Peek(); q.Dequeue(); // Update sum of current // level sum = sum + Value[temp]; // Enqueue the children of // dequeued node for(int i = 0; i < adj[temp].Count; i++) { q.Enqueue(adj[temp][i]); } } // Update maximum level sum result = Math.Max(sum, result); } // Return the result return result; } // Driver Code public static void Main(String[] args) { // Number of nodes int N = 10; // Edges of the N-ary tree int[,] Edges = {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}, {3, 6}, {6, 7}, {6, 8}, {6, 9}}; // Given cost int[] Value = {1, 2, -1, 3, 4, 5, 8, 6, 12, 7}; // Function call Console.WriteLine(maxLevelSum(N, N - 1, Value, Edges)); } } // This code is contributed by Princi Singh
Javascript
<script> // JavaScript program for the above approach // Function to find the maximum sum // a level in N-ary treeusing BFS function maxLevelSum(N, M, Value, Edges) { // Stores the edges of the graph let adj = new Array(N); for(let i = 0; i < N; i++) { adj[i] = []; } // Create Adjacency list for(let i = 0; i < M; i++) { adj[Edges[i][0]].push(Edges[i][1]); } // Initialize result let result = Value[0]; // Stores the nodes of each level let q = []; // Insert root q.push(0); // Perform level order // traversal while (q.length != 0) { // Count of nodes of the // current level let count = q.length; let sum = 0; // Traverse the current // level while (count-- > 0) { // Dequeue a node from // queue let temp = q[0]; q.shift(); // Update sum of current // level sum = sum + Value[temp]; // Enqueue the children of // dequeued node for(let i = 0; i < adj[temp].length; i++) { q.push(adj[temp][i]); } } // Update maximum level sum result = Math.max(sum, result); } // Return the result return result; } // Number of nodes let N = 10; // Edges of the N-ary tree let Edges = [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5], [3, 6], [6, 7], [6, 8], [6, 9]]; // Given cost let Value = [1, 2, -1, 3, 4, 5, 8, 6, 12, 7]; // Function call document.write(maxLevelSum(N, N - 1, Value, Edges)); </script>
25
Complejidad temporal: O(N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA