Dado un árbol binario que tiene Nodes positivos y negativos, la tarea es encontrar la suma máxima de Nodes que no son hojas entre todos los niveles del árbol binario dado.
Ejemplos:
Input: 4 / \ 2 -5 / \ -1 3 Output: 4 Sum of all non-leaf nodes at 0th level is 4. Sum of all non-leaf nodes at 1st level is 2. Sum of all non-leaf nodes at 2nd level is 0. Hence maximum sum is 4 Input: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 Output: 8
Enfoque: La idea para resolver el problema anterior es hacer el recorrido del árbol por orden de niveles . Mientras realiza el recorrido, procese los Nodes de diferentes niveles por separado. Para cada nivel que se procesa, calcule la suma de los Nodes que no son hojas en el nivel y realice un seguimiento de la suma máxima.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // A binary tree node has data, pointer to left child // and a pointer to right child struct Node { int data; struct Node *left, *right; }; // Function to return the maximum sum of non-leaf nodes // at any level in tree using level order traversal int maxNonLeafNodesSum(struct Node* root) { // Base case if (root == NULL) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track // of the number of nodes at every level queue<Node*> q; q.push(root); while (!q.empty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size(); // Iterate for all the nodes in the queue currently int sum = 0; while (count--) { // Dequeue a node from queue Node* temp = q.front(); q.pop(); // Add non-leaf node's value to current sum if (temp->left != NULL || temp->right != NULL) sum = sum + temp->data; // Enqueue left and right children of // dequeued node if (temp->left != NULL) q.push(temp->left); if (temp->right != NULL) q.push(temp->right); } // Update the maximum sum of leaf nodes value result = max(sum, result); } return result; } // Helper function that allocates a new node with the // given data and NULL left and right pointers struct Node* newNode(int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); cout << maxNonLeafNodesSum(root) << endl; return 0; }
Java
// Java implementation of // the above approach import java.util.LinkedList; import java.util.Queue; class GFG{ // A binary tree node has data, // pointer to left child // and a pointer to right child static class Node { int data; Node left, right; public Node(int data) { this.data = data; this.left = this.right = null; } }; // Function to return the maximum // sum of non-leaf nodes at any // level in tree using level // order traversal static int maxNonLeafNodesSum(Node root) { // Base case if (root == null) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track // of the number of nodes at every level Queue<Node> q = new LinkedList<>(); q.add(root); while (!q.isEmpty()) { // Get the size of queue // when the level order // traversal for one // level finishes int count = q.size(); // Iterate for all the nodes // in the queue currently int sum = 0; while (count-- > 0) { // Dequeue a node // from queue Node temp = q.poll(); // Add non-leaf node's // value to current sum if (temp.left != null || temp.right != null) sum = sum + temp.data; // Enqueue left and right // children of dequeued node if (temp.left != null) q.add(temp.left); if (temp.right != null) q.add(temp.right); } // Update the maximum sum // of leaf nodes value result = max(sum, result); } return result; } static int max(int sum, int result) { if (sum > result) return sum; return result; } // Driver code public static void main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7); System.out.println(maxNonLeafNodesSum(root)); } } // This code is contributed by sanjeev2552
Python3
# Python3 implementation of the approach import queue # A binary tree node has data, pointer to # left child and a pointer to right child class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to return the maximum Sum of # non-leaf nodes at any level in tree # using level order traversal def maxNonLeafNodesSum(root): # Base case if root == None: return 0 # Initialize result result = 0 # Do Level order traversal keeping track # of the number of nodes at every level q = queue.Queue() q.put(root) while not q.empty(): # Get the size of queue when the level # order traversal for one level finishes count = q.qsize() # Iterate for all the nodes # in the queue currently Sum = 0 while count: # Dequeue a node from queue temp = q.get() # Add non-leaf node's value to current Sum if temp.left != None or temp.right != None: Sum += temp.data # Enqueue left and right # children of dequeued node if temp.left != None: q.put(temp.left) if temp.right != None: q.put(temp.right) count -= 1 # Update the maximum Sum of leaf nodes value result = max(Sum, result) return result # Driver code if __name__ == "__main__": root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(8) root.right.right.left = Node(6) root.right.right.right = Node(7) print(maxNonLeafNodesSum(root)) # This code is contributed by Rituraj Jain
C#
// C# implementation of // the above approach using System; using System.Collections; class GFG{ // A binary tree node has data, // pointer to left child // and a pointer to right child class Node { public int data; public Node left, right; public Node(int data) { this.data = data; this.left = this.right = null; } }; // Function to return the maximum // sum of non-leaf nodes at any // level in tree using level // order traversal static int maxNonLeafNodesSum(Node root) { // Base case if (root == null) return 0; // Initialize result int result = 0; // Do Level order traversal keeping track // of the number of nodes at every level Queue q = new Queue(); q.Enqueue(root); while (q.Count != 0) { // Get the size of queue // when the level order // traversal for one // level finishes int count = q.Count; // Iterate for all the nodes // in the queue currently int sum = 0; while (count-- > 0) { // Dequeue a node // from queue Node temp = (Node)q.Dequeue(); // Add non-leaf node's // value to current sum if (temp.left != null || temp.right != null) sum = sum + temp.data; // Enqueue left and right // children of dequeued node if (temp.left != null) q.Enqueue(temp.left); if (temp.right != null) q.Enqueue(temp.right); } // Update the maximum sum // of leaf nodes value result = max(sum, result); } return result; } static int max(int sum, int result) { if (sum > result) return sum; return result; } // Driver code public static void Main(string[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7); Console.Write(maxNonLeafNodesSum(root)); } } // This code is contributed by rutvik_56
Javascript
<script> // JavaScript implementation of the approach // A binary tree node has data, // pointer to left child // and a pointer to right child class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // Function to return the maximum // sum of non-leaf nodes at any // level in tree using level // order traversal function maxNonLeafNodesSum(root) { // Base case if (root == null) return 0; // Initialize result let result = 0; // Do Level order traversal keeping track // of the number of nodes at every level let q = []; q.push(root); while (q.length > 0) { // Get the size of queue // when the level order // traversal for one // level finishes let count = q.length; // Iterate for all the nodes // in the queue currently let sum = 0; while (count-- > 0) { // Dequeue a node // from queue let temp = q[0]; q.shift(); // Add non-leaf node's // value to current sum if (temp.left != null || temp.right != null) sum = sum + temp.data; // Enqueue left and right // children of dequeued node if (temp.left != null) q.push(temp.left); if (temp.right != null) q.push(temp.right); } // Update the maximum sum // of leaf nodes value result = max(sum, result); } return result; } function max(sum, result) { if (sum > result) return sum; return result; } let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(8); root.right.right.left = new Node(6); root.right.right.right = new Node(7); document.write(maxNonLeafNodesSum(root)); </script>
Producción:
8
Publicación traducida automáticamente
Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA