Dado un árbol binario, encuentre la suma máxima en un árbol binario agregando el padre con sus hijos. Se deben agregar exactamente tres Nodes. Si el árbol no tiene un Node con sus dos hijos como no NULL, devuelve 0.
Simplemente recorremos el árbol y encontramos el Node que tiene la suma máxima. Tenemos que cuidar las hojas.
C++
// C++ program to find maximum sum of a node // and its children #include <iostream> using namespace std; struct Node { int data; struct Node *left, *right; }; // insertion of Node in Tree struct Node* newNode(int n) { struct Node* root = new Node(); root->data = n; root->left = root->right = NULL; return root; } int maxSum(struct Node* root) { if (root == NULL) return 0; int res = maxSum(root->left); // if left and right link are null then // add all the three Node if (root->left != NULL && root->right != NULL) { int sum = root->data + root->left->data + root->right->data; res = max(res, sum); } return max(res, maxSum(root->right)); } int main() { struct Node* root = newNode(15); root->left = newNode(16); root->left->left = newNode(8); root->left->left->left = newNode(55); root->left->right = newNode(67); root->left->right->left = newNode(44); root->right = newNode(17); root->right->left = newNode(7); root->right->left->right = newNode(11); root->right->right = newNode(41); cout << maxSum(root); return 0; }
Java
// Java program to find // maximum sum of a node // and its children import java.util.*; // insertion of Node in Tree class Node { int data; Node left, right; Node(int key) { data = key; left = right = null; } } class GFG { public static int maxSum(Node root) { if (root == null) return 0; int res = maxSum(root.left); // if left and right link are null // then add all the three Node if (root.left != null && root.right != null) { int sum = root.data + root.left.data + root.right.data; res = Math.max(res, sum); } return Math.max(res, maxSum(root.right)); } // Driver code public static void main (String[] args) { Node root = new Node(15); root.left = new Node(16); root.left.right = new Node(67); root.left.right.left = new Node(44); root.left.left = new Node(8); root.left.left.left = new Node(55); root.right = new Node(17); root.right.right = new Node(41); root.right.left = new Node(7); root.right.left.right = new Node(11); System.out.print(maxSum(root)); } } // This code is contributed // by akash1295
Python3
# Python program to find maximum # sum of a node and its children class newNode(): def __init__(self, data): self.data = data self.left = None self.right = None def maxSum(root): if (root == None): return 0 res = maxSum(root.left) # if left and right link are None then # add all the three Node if (root.left != None and root.right != None): sum = root.data + root.left.data + root.right.data res = max(res, sum) return max(res, maxSum(root.right)) # Driver code if __name__ == '__main__': root = newNode(15) root.left = newNode(16) root.left.left = newNode(8) root.left.left.left = newNode(55) root.left.right = newNode(67) root.left.right.left = newNode(44) root.right = newNode(17) root.right.left = newNode(7) root.right.left.right = newNode(11) root.right.right = newNode(41) print(maxSum(root)) # This code is contributed by SHUBHAMSINGH10
C#
// C# program to find // maximum sum of a node // and its children using System; // insertion of Node in Tree public class Node { public int data; public Node left, right; public Node(int key) { data = key; left = right = null; } } public class GFG { public static int maxSum(Node root) { if (root == null) return 0; int res = maxSum(root.left); // if left and right link are null // then add all the three Node if (root.left != null && root.right != null) { int sum = root.data + root.left.data + root.right.data; res = Math.Max(res, sum); } return Math.Max(res, maxSum(root.right)); } // Driver code public static void Main () { Node root = new Node(15); root.left = new Node(16); root.left.right = new Node(67); root.left.right.left = new Node(44); root.left.left = new Node(8); root.left.left.left = new Node(55); root.right = new Node(17); root.right.right = new Node(41); root.right.left = new Node(7); root.right.left.right = new Node(11); Console.Write(maxSum(root)); } } /* This code is contributed PrinciRaj1992 */
Javascript
<script> // Javascript program to find // maximum sum of a node // and its children // Insertion of Node in Tree class Node { constructor(key) { this.data = key; this.left = null; this.right = null; } } function maxSum(root) { if (root == null) return 0; var res = maxSum(root.left); // If left and right link are null // then add all the three Node if (root.left != null && root.right != null) { var sum = root.data + root.left.data + root.right.data; res = Math.max(res, sum); } return Math.max(res, maxSum(root.right)); } // Driver code var root = new Node(15); root.left = new Node(16); root.left.right = new Node(67); root.left.right.left = new Node(44); root.left.left = new Node(8); root.left.left.left = new Node(55); root.right = new Node(17); root.right.right = new Node(41); root.right.left = new Node(7); root.right.left.right = new Node(11); document.write(maxSum(root)); // This code is contributed by rutvik_56 </script>
Producción:
91
Publicación traducida automáticamente
Artículo escrito por Mohd_Saliem y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA