Dado un árbol binario, encuentre la suma vertical de los Nodes que están en la misma línea vertical. Imprime todas las sumas a través de diferentes líneas verticales.
Ejemplos:
1 / \ 2 3 / \ / \ 4 5 6 7
El árbol tiene 5 líneas verticales.
- Vertical-Line-1 tiene solo un Node 4 => la suma vertical es 4
- Vertical-Line-2: tiene solo un Node 2 => la suma vertical es 2
- Vertical-Line-3: tiene tres Nodes: 1,5,6 => la suma vertical es 1+5+6 = 12
- Vertical-Line-4: tiene un solo Node 3 => la suma vertical es 3
- Vertical-Line-5: tiene un solo Node 7 => la suma vertical es 7
- Entonces, la salida esperada es 4, 2, 12, 3 y 7
Necesitamos verificar las distancias horizontales desde la raíz para todos los Nodes. Si dos Nodes tienen la misma Distancia Horizontal (HD), entonces están en la misma línea vertical. La idea de HD es simple. HD para raíz es 0, un borde derecho (borde que se conecta al subárbol derecho) se considera como una distancia horizontal de +1 y un borde izquierdo se considera como una distancia horizontal de -1. Por ejemplo, en el árbol anterior, HD para el Node 4 está en -2, HD para el Node 2 es -1, HD para 5 y 6 es 0 y HD para el Node 7 es +2.
Podemos hacer un recorrido en orden del árbol binario dado. Mientras recorremos el árbol, podemos calcular HD de forma recursiva. Inicialmente pasamos la distancia horizontal como 0 para la raíz. Para el subárbol izquierdo, pasamos la Distancia horizontal como Distancia horizontal de la raíz menos 1. Para el subárbol derecho, pasamos la Distancia horizontal como Distancia horizontal de la raíz más 1.
La siguiente es la implementación de Java para lo mismo. HashMap se utiliza para almacenar las sumas verticales para diferentes distancias horizontales. Gracias a Nages por sugerir este método.
C++
// C++ program to find Vertical Sum in // a given Binary Tree #include<bits/stdc++.h> using namespace std; struct Node { int data; struct Node *left, *right; }; // A utility function to create a new // Binary Tree node Node* newNode(int data) { Node *temp = new Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Traverses the tree in in-order form and // populates a hashMap that contains the // vertical sum void verticalSumUtil(Node *node, int hd, map<int, int> &Map) { // Base case if (node == NULL) return; // Recur for left subtree verticalSumUtil(node->left, hd-1, Map); // Add val of current node to // map entry of corresponding hd Map[hd] += node->data; // Recur for right subtree verticalSumUtil(node->right, hd+1, Map); } // Function to find vertical sum void verticalSum(Node *root) { // a map to store sum of nodes for each // horizontal distance map < int, int> Map; map < int, int> :: iterator it; // populate the map verticalSumUtil(root, 0, Map); // Prints the values stored by VerticalSumUtil() for (it = Map.begin(); it != Map.end(); ++it) { cout << it->first << ": " << it->second << endl; } } // Driver program to test above functions int main() { // Create binary tree as shown in above figure Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->right->left->right = newNode(8); root->right->right->right = newNode(9); cout << "Following are the values of vertical" " sums with the positions of the " "columns with respect to root\n"; verticalSum(root); return 0; } // This code is contributed by Aditi Sharma
Java
import java.util.TreeMap; // Class for a tree node class TreeNode { // data members private int key; private TreeNode left; private TreeNode right; // Accessor methods public int key() { return key; } public TreeNode left() { return left; } public TreeNode right() { return right; } // Constructor public TreeNode(int key) { this.key = key; left = null; right = null; } // Methods to set left and right subtrees public void setLeft(TreeNode left) { this.left = left; } public void setRight(TreeNode right) { this.right = right; } } // Class for a Binary Tree class Tree { private TreeNode root; // Constructors public Tree() { root = null; } public Tree(TreeNode n) { root = n; } // Method to be called by the consumer classes // like Main class public void VerticalSumMain() { VerticalSum(root); } // A wrapper over VerticalSumUtil() private void VerticalSum(TreeNode root) { // base case if (root == null) { return; } // Creates an empty TreeMap hM TreeMap<Integer, Integer> hM = new TreeMap<Integer, Integer>(); // Calls the VerticalSumUtil() to store the // vertical sum values in hM VerticalSumUtil(root, 0, hM); // Prints the values stored by VerticalSumUtil() if (hM != null) { System.out.println(hM.entrySet()); } } // Traverses the tree in in-order form and builds // a hashMap hM that contains the vertical sum private void VerticalSumUtil(TreeNode root, int hD, TreeMap<Integer, Integer> hM) { // base case if (root == null) { return; } // Store the values in hM for left subtree VerticalSumUtil(root.left(), hD - 1, hM); // Update vertical sum for hD of this node int prevSum = (hM.get(hD) == null) ? 0 : hM.get(hD); hM.put(hD, prevSum + root.key()); // Store the values in hM for right subtree VerticalSumUtil(root.right(), hD + 1, hM); } } // Driver class to test the verticalSum methods public class Main { public static void main(String[] args) { /* Create the following Binary Tree 1 / \ 2 3 / \ / \ 4 5 6 7 */ TreeNode root = new TreeNode(1); root.setLeft(new TreeNode(2)); root.setRight(new TreeNode(3)); root.left().setLeft(new TreeNode(4)); root.left().setRight(new TreeNode(5)); root.right().setLeft(new TreeNode(6)); root.right().setRight(new TreeNode(7)); Tree t = new Tree(root); System.out.println("Following are the values of" + " vertical sums with the positions" + " of the columns with respect to root "); t.VerticalSumMain(); } }
Python3
# Python3 program to find Vertical Sum in # a given Binary Tree # Node definition class newNode: def __init__(self, data): self.left = None self.right = None self.data = data # Traverses the tree in in-order form and # populates a hashMap that contains the # vertical sum def verticalSumUtil(root, hd, Map): # Base case if(root == None): return # Recur for left subtree verticalSumUtil(root.left, hd - 1, Map) # Add val of current node to # map entry of corresponding hd if(hd in Map.keys()): Map[hd] = Map[hd] + root.data else: Map[hd] = root.data # Recur for right subtree verticalSumUtil(root.right, hd + 1, Map) # Function to find vertical_sum def verticalSum(root): # a dictionary to store sum of # nodes for each horizontal distance Map = {} # Populate the dictionary verticalSumUtil(root, 0, Map); # Prints the values stored # by VerticalSumUtil() for i,j in Map.items(): print(i, "=", j, end = ", ") # Driver Code if __name__ == "__main__": ''' Create the following Binary Tree 1 / \ 2 3 / \ / \ 4 5 6 7 ''' root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.left = newNode(6) root.right.right = newNode(7) print("Following are the values of vertical " "sums with the positions of the " "columns with respect to root") verticalSum(root) # This code is contributed by vipinyadav15799
C#
// C# program to find Vertical Sum in // a given Binary Tree using System; using System.Collections.Generic; // Class for a tree node class TreeNode { // data members public int key; public TreeNode left; public TreeNode right; // Accessor methods public int Key() { return key; } public TreeNode Left() { return left; } public TreeNode Right() { return right; } // Constructor public TreeNode(int key) { this.key = key; left = null; right = null; } // Methods to set left and right subtrees public void setLeft(TreeNode left) { this.left = left; } public void setRight(TreeNode right) { this.right = right; } } // Class for a Binary Tree class Tree { private TreeNode root; // Constructors public Tree() { root = null; } public Tree(TreeNode n) { root = n; } // Method to be called by the consumer classes // like Main class public void VerticalSumMain() { VerticalSum(root); } // A wrapper over VerticalSumUtil() private void VerticalSum(TreeNode root) { // base case if (root == null) { return; } // Creates an empty hashMap hM Dictionary<int, int> hM = new Dictionary<int, int>(); // Calls the VerticalSumUtil() to store the // vertical sum values in hM VerticalSumUtil(root, 0, hM); // Prints the values stored by VerticalSumUtil() if (hM != null) { Console.Write("["); foreach(KeyValuePair<int, int> entry in hM) { Console.Write(entry.Key + " = " + entry.Value + ", "); } Console.Write("]"); } } // Traverses the tree in in-order form and builds // a hashMap hM that contains the vertical sum private void VerticalSumUtil(TreeNode root, int hD, Dictionary<int, int> hM) { // base case if (root == null) { return; } // Store the values in hM for left subtree VerticalSumUtil(root.Left(), hD - 1, hM); // Update vertical sum for hD of this node int prevSum = 0; if(hM.ContainsKey(hD)) { prevSum = hM[hD]; hM[hD] = prevSum + root.Key(); } else hM.Add(hD, prevSum + root.Key()); // Store the values in hM for right subtree VerticalSumUtil(root.Right(), hD + 1, hM); } } // Driver Code public class GFG { public static void Main(String[] args) { /* Create the following Binary Tree 1 / \ 2 3 / \ / \ 4 5 6 7 */ TreeNode root = new TreeNode(1); root.setLeft(new TreeNode(2)); root.setRight(new TreeNode(3)); root.Left().setLeft(new TreeNode(4)); root.Left().setRight(new TreeNode(5)); root.Right().setLeft(new TreeNode(6)); root.Right().setRight(new TreeNode(7)); Tree t = new Tree(root); Console.WriteLine("Following are the values of" + " vertical sums with the positions" + " of the columns with respect to root "); t.VerticalSumMain(); } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript program to find Vertical Sum in // a given Binary Tree // Node definition class newNode{ constructor(data){ this.left = null this.right = null this.data = data } } // Traverses the tree in in-order form and // populates a hashMap that contains the // vertical sum function verticalSumUtil(root, hd, map){ // Base case if(root == null) return; // Recur for left subtree verticalSumUtil(root.left, hd - 1, map) // Add val of current node to // map entry of corresponding hd if(map.has(hd) == true) map.set(hd , map.get(hd) + root.data) else map.set(hd , root.data) // Recur for right subtree verticalSumUtil(root.right, hd + 1, map) } // Function to find vertical_sum function verticalSum(root){ // a dictionary to store sum of // nodes for each horizontal distance let map = new Map() // Populate the dictionary verticalSumUtil(root, 0, map); // Prints the values stored // by VerticalSumUtil() for(const [i,j] of map.entries()) document.write(i + ": " + j) } // Driver Code // Create the following Binary Tree // 1 // / \ // 2 3 /// \ / \ // 4 5 6 7 root = new newNode(1) root.left = new newNode(2) root.right = new newNode(3) root.left.left = new newNode(4) root.left.right = new newNode(5) root.right.left = new newNode(6) root.right.right = new newNode(7) root.right.left.right = new newNode(8); root.right.right.right = new newNode(9); document.write("Following are the values of vertical sums with the positions of the columns with respect to root") verticalSum(root) // This code is contributed by shinjanpatra </script>
Following are the values of vertical sums with the positions of the columns with respect to root -2: 4 -1: 2 0: 12 1: 11 2: 7 3: 9
Suma vertical en árbol binario | Conjunto 2 (espacio optimizado)
Complejidad de tiempo: O (nlogn)
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA