Suma y Producto de elemento máximo y mínimo en Árbol Binario

Dado un árbol binario. La tarea es encontrar la suma y el producto de los elementos máximo y mínimo en él. 
Por ejemplo, la suma de los elementos máximo y mínimo en el siguiente árbol binario es 10 y el producto es 9. 

La idea es atravesar el árbol y encontrar los elementos máximos y mínimos en el árbol e imprimir su producto y suma. 
Para encontrar el elemento máximo en el árbol binario, recorra recursivamente el árbol y devuelva el máximo de tres a continuación: 

  1. Datos del Node actual.
  2. Máximo en el subárbol izquierdo del Node.
  3. Máximo en el subárbol derecho del Node.

De manera similar, podemos encontrar el elemento mínimo en el árbol binario comparando tres valores.
El siguiente programa ilustra el enfoque anterior:

C++

// CPP program to find sum and product of
// maximum and minimum in a Binary Tree
#include<bits/stdc++.h>
#include<iostream>
using namespace std;
 
// A tree node
class Node
{
    public:
    int data;
    Node *left, *right;
     
    /* Constructor that allocates
    a new node with the given data
    and NULL left and right pointers. */
    Node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
    }
};
 
 
// Function to return minimum value
// in a given Binary Tree
int findMin(Node* root)
{
    // Base case
    if (root == NULL)
        return INT_MAX;
 
    // Return minimum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMin(root->left);
    int rres = findMin(root->right);
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}
 
// Function to returns maximum value
// in a given Binary Tree
int findMax(Node* root)
{
    // Base case
    if (root == NULL)
        return INT_MIN;
 
    // Return maximum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMax(root->left);
    int rres = findMax(root->right);
     
    if (lres > res)
        res = lres;
    if (rres > res)
        res = rres;
    return res;
}
 
// Function to find sum of max and min
// elements in the Binary Tree
int findSum(int max , int min)
{
    return max + min;
}
 
// Function to find product of max and min
// elements in the Binary Tree
int findProduct(int max, int min)
{
    return max*min;
}
 
// Driver Code
int main()
{
    // Create Binary Tree
    Node* NewRoot = NULL;
    Node* root = new Node(2);
    root->left = new Node(7);
    root->right = new Node(5);
    root->left->right = new Node(6);
    root->left->right->left = new Node(1);
    root->left->right->right = new Node(11);
    root->right->right = new Node(9);
    root->right->right->left = new Node(4);
     
    int max = findMax(root);
    int min = findMin(root);
     
    cout << "Sum of Maximum and Minimum element is " <<
           findSum(max,min);
    cout << "\nProduct of Maximum and Minimum element is " <<
            findProduct(max,min);
    return 0;
}
 
// This code is contributed by rathbhupendra

C

// C program to find sum and product of
// maximum and minimum in a Binary Tree
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
 
// A tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// A utility function to create a new node
struct Node* newNode(int data)
{
    struct Node* node = (struct Node*)
        malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function to return minimum value
// in a given Binary Tree
int findMin(struct Node* root)
{
    // Base case
    if (root == NULL)
        return INT_MAX;
 
    // Return minimum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMin(root->left);
    int rres = findMin(root->right);
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}
 
// Function to returns maximum value
// in a given Binary Tree
int findMax(struct Node* root)
{
    // Base case
    if (root == NULL)
        return INT_MIN;
 
    // Return maximum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root->data;
    int lres = findMax(root->left);
    int rres = findMax(root->right);
     
    if (lres > res)
        res = lres;
    if (rres > res)
        res = rres;
    return res;
}
 
// Function to find sum of max and min
// elements in the Binary Tree
int findSum(int max , int min)
{
    return max + min;
}
 
// Function to find product of max and min
// elements in the Binary Tree
int findProduct(int max, int min)
{
    return max*min;
}
 
// Driver Code
int main(void)
{  
    // Create Binary Tree
    struct Node* NewRoot = NULL;
    struct Node* root = newNode(2);
    root->left = newNode(7);
    root->right = newNode(5);
    root->left->right = newNode(6);
    root->left->right->left = newNode(1);
    root->left->right->right = newNode(11);
    root->right->right = newNode(9);
    root->right->right->left = newNode(4);
     
    int max = findMax(root);
    int min = findMin(root);
     
    printf("Sum of Maximum and Minimum element is %d",
                                           findSum(max,min));
    printf("\nProduct of Maximum and Minimum element is %d",
                                        findProduct(max,min));
                                         
    return 0;
}

Java

// JAVA program to find sum and product of
// maximum and minimum in a Binary Tree
import java.util.*;
 
class GFG
{
 
// A tree node
static class Node
{
    public int data;
    Node left, right;
     
    /* Constructor that allocates
    a new node with the given data
    and null left and right pointers. */
    Node(int data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
};
 
// Function to return minimum value
// in a given Binary Tree
static int findMin(Node root)
{
    // Base case
    if (root == null)
        return Integer.MAX_VALUE;
 
    // Return minimum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root.data;
    int lres = findMin(root.left);
    int rres = findMin(root.right);
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}
 
// Function to returns maximum value
// in a given Binary Tree
static int findMax(Node root)
{
    // Base case
    if (root == null)
        return Integer.MIN_VALUE;
 
    // Return maximum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root.data;
    int lres = findMax(root.left);
    int rres = findMax(root.right);
     
    if (lres > res)
        res = lres;
    if (rres > res)
        res = rres;
    return res;
}
 
// Function to find sum of max and min
// elements in the Binary Tree
static int findSum(int max , int min)
{
    return max + min;
}
 
// Function to find product of max and min
// elements in the Binary Tree
static int findProduct(int max, int min)
{
    return max * min;
}
 
// Driver Code
public static void main(String[] args)
{
    // Create Binary Tree
 
    Node root = new Node(2);
    root.left = new Node(7);
    root.right = new Node(5);
    root.left.right = new Node(6);
    root.left.right.left = new Node(1);
    root.left.right.right = new Node(11);
    root.right.right = new Node(9);
    root.right.right.left = new Node(4);
     
    int max = findMax(root);
    int min = findMin(root);
     
    System.out.print("Sum of Maximum and Minimum element is " +
        findSum(max, min));
    System.out.print("\nProduct of Maximum and Minimum element is " +
            findProduct(max, min));
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python program to find sum and product of
# maximum and minimum in a Binary Tree
 
_MIN=-2147483648
_MAX=2147483648
 
# Helper function that allocates a new
# node with the given data and None left
# and right pointers.                                    
class newNode:
 
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Function to return minimum value
# in a given Binary Tree
def findMin(root):
     
    # Base case
    if (root == None):
        return _MAX
 
    # Return minimum of 3 values:
    # 1) Root's data 2) Max in Left Subtree
    # 3) Max in right subtree
    res = root.data
    lres = findMin(root.left)
    rres = findMin(root.right)
    if (lres < res):
        res = lres
    if (rres < res):
        res = rres
    return res
     
# Function to returns maximum value
# in a given Binary Tree
def findMax( root):
     
    # Base case
    if (root == None):
        return _MIN
 
    """ Return maximum of 3 values:
    1) Root's data 2) Max in Left Subtree
    3) Max in right subtree"""
    res = root.data
    lres = findMax(root.left)
    rres = findMax(root.right)
     
    if (lres > res):
        res = lres
    if (rres > res):
        res = rres
    return res
 
# Function to find sum of max and min
# elements in the Binary Tree
def findSum( max , min):
 
    return max + min
 
# Function to find product of max and min
# elements in the Binary Tree
def findProduct( max, min):
 
    return max*min
 
# Driver Code
if __name__ == '__main__':
    """ Create binary Tree """
    root = newNode(2)
    root.left = newNode(7)
    root.right = newNode(5)
    root.left.right = newNode(6)
    root.left.right.left = newNode(1)
    root.left.right.right = newNode(11)
    root.right.right = newNode(9)
    root.right.right.left = newNode(4)
    max = findMax(root);
    min = findMin(root);
     
    print("Sum of Maximum and " +
            "Minimum element is ",
                findSum(max,min))
                 
    print("Product of Maximum and" +
            "Minimum element is",
            findProduct(max,min))
     
 
# This code is contributed
# Shubham Singh(SHUBHAMSINGH10)

C#

// C# program to find sum and product of
// maximum and minimum in a Binary Tree
using System;
 
class GFG
{
 
// A tree node
class Node
{
    public int data;
    public Node left, right;
     
    /* Constructor that allocates
    a new node with the given data
    and null left and right pointers. */
    public Node(int data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
};
 
// Function to return minimum value
// in a given Binary Tree
static int findMin(Node root)
{
    // Base case
    if (root == null)
        return int.MaxValue;
 
    // Return minimum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root.data;
    int lres = findMin(root.left);
    int rres = findMin(root.right);
    if (lres < res)
        res = lres;
    if (rres < res)
        res = rres;
    return res;
}
 
// Function to returns maximum value
// in a given Binary Tree
static int findMax(Node root)
{
    // Base case
    if (root == null)
        return int.MinValue;
 
    // Return maximum of 3 values:
    // 1) Root's data 2) Max in Left Subtree
    // 3) Max in right subtree
    int res = root.data;
    int lres = findMax(root.left);
    int rres = findMax(root.right);
     
    if (lres > res)
        res = lres;
    if (rres > res)
        res = rres;
    return res;
}
 
// Function to find sum of max and min
// elements in the Binary Tree
static int findSum(int max , int min)
{
    return max + min;
}
 
// Function to find product of max and min
// elements in the Binary Tree
static int findProduct(int max, int min)
{
    return max * min;
}
 
// Driver Code
public static void Main(String[] args)
{
    // Create Binary Tree
    Node root = new Node(2);
    root.left = new Node(7);
    root.right = new Node(5);
    root.left.right = new Node(6);
    root.left.right.left = new Node(1);
    root.left.right.right = new Node(11);
    root.right.right = new Node(9);
    root.right.right.left = new Node(4);
     
    int max = findMax(root);
    int min = findMin(root);
     
    Console.Write("Sum of Maximum and " +
                  "Minimum element is " +
                      findSum(max, min));
    Console.Write("\nProduct of Maximum and " +
                        "Minimum element is " +
                        findProduct(max, min));
}
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
// javascript program to find sum and product of
// maximum and minimum in a Binary Tree
 
    // A tree node
    class Node {
        constructor(val) {
            this.data = val;
            this.left = null;
            this.right = null;
        }
    }
 
    /*
     * Constructor that allocates a new node with the given data and null left and
     * right pointers.
     */
 
    // Function to return minimum value
    // in a given Binary Tree
    function findMin(root) {
        // Base case
        if (root == null)
            return Number.MAX_VALUE;
 
        // Return minimum of 3 values:
        // 1) Root's data 2) Max in Left Subtree
        // 3) Max in right subtree
        var res = root.data;
        var lres = findMin(root.left);
        var rres = findMin(root.right);
        if (lres < res)
            res = lres;
        if (rres < res)
            res = rres;
        return res;
    }
 
    // Function to returns maximum value
    // in a given Binary Tree
    function findMax(root) {
        // Base case
        if (root == null)
            return Number.MIN_VALUE;
 
        // Return maximum of 3 values:
        // 1) Root's data 2) Max in Left Subtree
        // 3) Max in right subtree
        var res = root.data;
        var lres = findMax(root.left);
        var rres = findMax(root.right);
 
        if (lres > res)
            res = lres;
        if (rres > res)
            res = rres;
        return res;
    }
 
    // Function to find sum of max and min
    // elements in the Binary Tree
    function findSum(max , min) {
        return max + min;
    }
 
    // Function to find product of max and min
    // elements in the Binary Tree
    function findProduct(max , min) {
        return max * min;
    }
 
    // Driver Code
     
        // Create Binary Tree
 
        var root = new Node(2);
        root.left = new Node(7);
        root.right = new Node(5);
        root.left.right = new Node(6);
        root.left.right.left = new Node(1);
        root.left.right.right = new Node(11);
        root.right.right = new Node(9);
        root.right.right.left = new Node(4);
 
        var max = findMax(root);
        var min = findMin(root);
 
        document.write("Sum of Maximum and Minimum element is "
        + findSum(max, min));
        document.write("<br/>Product of Maximum and Minimum element is "
        + findProduct(max, min));
 
// This code contributed by Rajput-Ji
</script>
Producción: 

Sum of Maximum and Minimum element is 12
Product of Maximum and Minimum element is 11

 

Publicación traducida automáticamente

Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *