Tensorflow.js tf.LayersModel clase .predictOnBatch() Método

Tensorflow.js es una biblioteca de código abierto desarrollada por Google para ejecutar modelos de aprendizaje automático, así como redes neuronales de aprendizaje profundo en el entorno del navegador o del Node.

La función .predictOnBatch() se usa para devolver expectativas para un grupo individual de instancias.

Sintaxis:  

predictOnBatch(x)

Parámetros:  

  • x: Son las instancias de entrada indicadas, como un tensor, es decir, los modelos que tienen precisamente una entrada o una array de tensores, es decir, modelos que tienen más de una entrada. Puede ser de tipo tf.Tensor o tf.Tensor[].

Valor devuelto: Devuelve el objeto tf.Tensor o tf.Tensor[].

Ejemplo 1:  

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Defining model
const Mod = tf.sequential({
   layers: [tf.layers.dense({units: 2, inputShape: [30]})]
});
  
// Calling predictOnBatch() method and
// Printing output
Mod.predictOnBatch(tf.randomNormal([6, 30])).print();

Producción:

Tensor
    [[-1.4716092, -1.8019401],
     [-1.0033149, -0.2789704],
     [-0.4451316, 0.2422157 ],
     [-0.1512984, -0.0726933],
     [2.1483333 , 2.4668102 ],
     [0.4091003 , 0.8335327 ]]

Ejemplo 2:

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Calling predictOnBatch() method and
// Printing output
tf.sequential({
   layers: [tf.layers.dense({units: 3, inputShape: [40]})]
}).predictOnBatch(tf.truncatedNormal([5, 40])).print();

Producción:

Tensor
    [[-1.5034456, -0.3429004, -0.2388536],
     [0.0083699 , -0.3176711, 2.1414554 ],
     [1.1850954 , -0.4481514, 1.1278313 ],
     [-0.1004405, 1.420954  , 0.4890856 ],
     [0.4184967 , 0.1191952 , -0.0936601]]

Referencia: https://js.tensorflow.org/api/latest/#tf.LayersModel.predictOnBatch

Publicación traducida automáticamente

Artículo escrito por nidhi1352singh y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *