El teorema de Nicomachu establece que la suma de los cubos de los primeros n números naturales es igual a los cuadrados de la suma de los números naturales.
En otras palabras
, podemos decir que la suma es igual al cuadrado del n-ésimo número triangular .
La prueba basada en la inducción matemática se puede encontrar aquí .
C++
// CPP program to verify Nicomachu's Theorem #include <bits/stdc++.h> using namespace std; void NicomachuTheorem_sum(int n) { // Compute sum of cubes int sum = 0; for (int k=1; k<=n; k++) sum += k*k*k; // Check if sum is equal to // given formula. int triNo = n*(n+1)/2; if (sum == triNo * triNo) cout << "Yes"; else cout << "No"; } // driver function int main() { int n = 5; NicomachuTheorem_sum(n); return 0; }
Java
// Java program to verify Nicomachu's Theorem import java.io.*; class GFG { static void NicomachuTheorem_sum(int n) { // Compute sum of cubes int sum = 0; for (int k = 1; k <= n; k++) sum += k * k * k; // Check if sum is equal to // given formula. int triNo = n * (n + 1) / 2; if (sum == triNo * triNo) System.out.println("Yes"); else System.out.println("No"); } // driver function public static void main (String[] args) { int n = 5; NicomachuTheorem_sum(n); } } // This code is contributed by anuj_67.
Python3
# Python3 program to verify # Nicomachu's Theorem def NicomachuTheorem_sum(n): # Compute sum of cubes sum = 0; for k in range(1, n + 1): sum += k * k * k; # Check if sum is equal to # given formula. triNo = n * (n + 1) / 2; if (sum == triNo * triNo): print("Yes"); else: print("No"); # Driver Code n = 5; NicomachuTheorem_sum(n); # This code is contributed # by mits
C#
// C# program to verify // Nicomachu's Theorem using System; class GFG { static void NicomachuTheorem_sum(int n) { // Compute sum of cubes int sum = 0; for (int k = 1; k <= n; k++) sum += k * k * k; // Check if sum is equal to // given formula. int triNo = n * (n + 1) / 2; if (sum == triNo * triNo) Console.WriteLine("Yes"); else Console.WriteLine("No"); } // Driver Code public static void Main () { int n = 5; NicomachuTheorem_sum(n); } } // This code is contributed by anuj_67
PHP
<?php // PHP program to verify // Nicomachu's Theorem function NicomachuTheorem_sum($n) { // Compute sum of cubes $sum = 0; for ($k = 1; $k <= $n; $k++) $sum += $k * $k * $k; // Check if sum is equal to // given formula. $triNo = $n * ($n + 1) / 2; if ($sum == $triNo * $triNo) echo "Yes"; else echo "No"; } // Driver Code $n = 5; NicomachuTheorem_sum($n); // This code is contributed by anuj_67. ?>
Javascript
<script> // JavaScript program to verify Nicomachu's Theorem function NicomachuTheorem_sum(n) { // Compute sum of cubes let sum = 0; for (let k = 1; k <= n; k++) sum += k * k * k; // Check if sum is equal to // given formula. let triNo = n * (n + 1) / 2; if (sum == triNo * triNo) document.write("Yes"); else document.write("No"); } // Driver code let n = 5; NicomachuTheorem_sum(n); // This code is contributed by souravghosh0416. </script>
Producción:
Yes
Complejidad temporal : O(n)
Espacio auxiliar : O(1)
Publicación traducida automáticamente
Artículo escrito por Shashank_Pathak y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA