TimSort

TimSort es un algoritmo de clasificación basado en Insertion Sort y Merge Sort .

  1. Se utiliza en Arrays.sort() de Java, así como en sorted() y sort() de Python.
  2. Primero clasifique las piezas pequeñas usando la clasificación por inserción, luego combine las piezas usando una combinación de clasificación por combinación.

Dividimos el Array en bloques conocidos como Run . Clasificamos esas ejecuciones usando la ordenación por inserción una por una y luego las fusionamos usando la función de combinación utilizada en la ordenación por fusión. Si el tamaño de la array es menor que el de ejecución, la array se ordena simplemente mediante la ordenación por inserción. El tamaño de la ejecución puede variar de 32 a 64 según el tamaño de la array. Tenga en cuenta que la función de combinación funciona bien cuando los subarreglos de tamaño son potencias de 2. La idea se basa en el hecho de que la ordenación por inserción funciona bien para arreglos pequeños.

Detalles de la siguiente implementación:

  • Consideramos el tamaño de la ejecución como 32 y la array de entrada se divide en sub-array.
  • Clasificamos una por una piezas de tamaño igual a ejecutar con una clasificación de inserción simple .
  • Después de clasificar las piezas individuales, las fusionamos una por una con la ordenación por fusión . Duplicamos el tamaño de los subarreglos fusionados después de cada iteración.

C++

// C++ program to perform TimSort.
#include<bits/stdc++.h>
using namespace std;
const int RUN = 32;
 
// This function sorts array from left index to
// to right index which is of size atmost RUN
void insertionSort(int arr[], int left, int right)
{
    for (int i = left + 1; i <= right; i++)
    {
        int temp = arr[i];
        int j = i - 1;
        while (j >= left && arr[j] > temp)
        {
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1] = temp;
    }
}
 
// Merge function merges the sorted runs
void merge(int arr[], int l, int m, int r)
{
     
    // Original array is broken in two parts
    // left and right array
    int len1 = m - l + 1, len2 = r - m;
    int left[len1], right[len2];
    for (int i = 0; i < len1; i++)
        left[i] = arr[l + i];
    for (int i = 0; i < len2; i++)
        right[i] = arr[m + 1 + i];
 
    int i = 0;
    int j = 0;
    int k = l;
 
    // After comparing, we
    // merge those two array
    // in larger sub array
    while (i < len1 && j < len2)
    {
        if (left[i] <= right[j])
        {
            arr[k] = left[i];
            i++;
        }
        else
        {
            arr[k] = right[j];
            j++;
        }
        k++;
    }
 
    // Copy remaining elements of left, if any
    while (i < len1)
    {
        arr[k] = left[i];
        k++;
        i++;
    }
 
    // Copy remaining element of right, if any
    while (j < len2)
    {
        arr[k] = right[j];
        k++;
        j++;
    }
}
 
// Iterative Timsort function to sort the
// array[0...n-1] (similar to merge sort)
void timSort(int arr[], int n)
{
     
    // Sort individual subarrays of size RUN
    for (int i = 0; i < n; i+=RUN)
        insertionSort(arr, i, min((i+RUN-1),
                                    (n-1)));
 
    // Start merging from size RUN (or 32).
    // It will merge
    // to form size 64, then 128, 256
    // and so on ....
    for (int size = RUN; size < n;
                             size = 2*size)
    {
         
        // pick starting point of
        // left sub array. We
        // are going to merge
        // arr[left..left+size-1]
        // and arr[left+size, left+2*size-1]
        // After every merge, we
        // increase left by 2*size
        for (int left = 0; left < n;
                             left += 2*size)
        {
             
            // find ending point of
            // left sub array
            // mid+1 is starting point
            // of right sub array
            int mid = left + size - 1;
            int right = min((left + 2*size - 1),
                                            (n-1));
 
            // merge sub array arr[left.....mid] &
            // arr[mid+1....right]
              if(mid < right)
                merge(arr, left, mid, right);
        }
    }
}
 
// Utility function to print the Array
void printArray(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        printf("%d  ", arr[i]);
    printf("\n");
}
 
// Driver program to test above function
int main()
{
    int arr[] = {-2, 7, 15, -14, 0, 15, 0, 7, -7,
                       -4, -13, 5, 8, -14, 12};
    int n = sizeof(arr)/sizeof(arr[0]);
    printf("Given Array is\n");
    printArray(arr, n);
 
    // Function Call
    timSort(arr, n);
 
    printf("After Sorting Array is\n");
    printArray(arr, n);
    return 0;
}

Java

// Java program to perform TimSort.
class GFG
{
 
    static int MIN_MERGE = 32;
 
    public static int minRunLength(int n)
    {
        assert n >= 0;
       
        // Becomes 1 if any 1 bits are shifted off
        int r = 0;
        while (n >= MIN_MERGE)
        {
            r |= (n & 1);
            n >>= 1;
        }
        return n + r;
    }
 
    // This function sorts array from left index to
    // to right index which is of size atmost RUN
    public static void insertionSort(int[] arr, int left,
                                     int right)
    {
        for (int i = left + 1; i <= right; i++)
        {
            int temp = arr[i];
            int j = i - 1;
            while (j >= left && arr[j] > temp)
            {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = temp;
        }
    }
 
    // Merge function merges the sorted runs
    public static void merge(int[] arr, int l,
                                 int m, int r)
    {
        // Original array is broken in two parts
        // left and right array
        int len1 = m - l + 1, len2 = r - m;
        int[] left = new int[len1];
        int[] right = new int[len2];
        for (int x = 0; x < len1; x++)
        {
            left[x] = arr[l + x];
        }
        for (int x = 0; x < len2; x++)
        {
            right[x] = arr[m + 1 + x];
        }
 
        int i = 0;
        int j = 0;
        int k = l;
 
        // After comparing, we merge those two array
        // in larger sub array
        while (i < len1 && j < len2)
        {
            if (left[i] <= right[j])
            {
                arr[k] = left[i];
                i++;
            }
            else {
                arr[k] = right[j];
                j++;
            }
            k++;
        }
 
        // Copy remaining elements
        // of left, if any
        while (i < len1)
        {
            arr[k] = left[i];
            k++;
            i++;
        }
 
        // Copy remaining element
        // of right, if any
        while (j < len2)
        {
            arr[k] = right[j];
            k++;
            j++;
        }
    }
 
    // Iterative Timsort function to sort the
    // array[0...n-1] (similar to merge sort)
    public static void timSort(int[] arr, int n)
    {
        int minRun = minRunLength(MIN_MERGE);
       
        // Sort individual subarrays of size RUN
        for (int i = 0; i < n; i += minRun)
        {
            insertionSort(arr, i,
                          Math.min((i + MIN_MERGE - 1), (n - 1)));
        }
 
        // Start merging from size
        // RUN (or 32). It will
        // merge to form size 64,
        // then 128, 256 and so on
        // ....
        for (int size = minRun; size < n; size = 2 * size)
        {
 
            // Pick starting point
            // of left sub array. We
            // are going to merge
            // arr[left..left+size-1]
            // and arr[left+size, left+2*size-1]
            // After every merge, we
            // increase left by 2*size
            for (int left = 0; left < n;
                                 left += 2 * size)
            {
 
                // Find ending point of left sub array
                // mid+1 is starting point of right sub
                // array
                int mid = left + size - 1;
                int right = Math.min((left + 2 * size - 1),
                                     (n - 1));
 
                // Merge sub array arr[left.....mid] &
                // arr[mid+1....right]
                  if(mid < right)
                    merge(arr, left, mid, right);
            }
        }
    }
 
    // Utility function to print the Array
    public static void printArray(int[] arr, int n)
    {
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.print("\n");
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { -2, 7,  15,  -14, 0, 15,  0, 7,
                      -7, -4, -13, 5,   8, -14, 12 };
        int n = arr.length;
        System.out.println("Given Array is");
        printArray(arr, n);
 
        timSort(arr, n);
 
        System.out.println("After Sorting Array is");
        printArray(arr, n);
    }
}
 
// This code has been contributed by 29AjayKumar

Python3

# Python3 program to perform basic timSort
MIN_MERGE = 32
 
 
def calcMinRun(n):
    """Returns the minimum length of a
    run from 23 - 64 so that
    the len(array)/minrun is less than or
    equal to a power of 2.
 
    e.g. 1=>1, ..., 63=>63, 64=>32, 65=>33,
    ..., 127=>64, 128=>32, ...
    """
    r = 0
    while n >= MIN_MERGE:
        r |= n & 1
        n >>= 1
    return n + r
 
 
# This function sorts array from left index to
# to right index which is of size atmost RUN
def insertionSort(arr, left, right):
    for i in range(left + 1, right + 1):
        j = i
        while j > left and arr[j] < arr[j - 1]:
            arr[j], arr[j - 1] = arr[j - 1], arr[j]
            j -= 1
 
 
# Merge function merges the sorted runs
def merge(arr, l, m, r):
 
    # original array is broken in two parts
    # left and right array
    len1, len2 = m - l + 1, r - m
    left, right = [], []
    for i in range(0, len1):
        left.append(arr[l + i])
    for i in range(0, len2):
        right.append(arr[m + 1 + i])
 
    i, j, k = 0, 0, l
 
    # after comparing, we merge those two array
    # in larger sub array
    while i < len1 and j < len2:
        if left[i] <= right[j]:
            arr[k] = left[i]
            i += 1
 
        else:
            arr[k] = right[j]
            j += 1
 
        k += 1
 
    # Copy remaining elements of left, if any
    while i < len1:
        arr[k] = left[i]
        k += 1
        i += 1
 
    # Copy remaining element of right, if any
    while j < len2:
        arr[k] = right[j]
        k += 1
        j += 1
 
 
# Iterative Timsort function to sort the
# array[0...n-1] (similar to merge sort)
def timSort(arr):
    n = len(arr)
    minRun = calcMinRun(n)
 
    # Sort individual subarrays of size RUN
    for start in range(0, n, minRun):
        end = min(start + minRun - 1, n - 1)
        insertionSort(arr, start, end)
 
    # Start merging from size RUN (or 32). It will merge
    # to form size 64, then 128, 256 and so on ....
    size = minRun
    while size < n:
 
        # Pick starting point of left sub array. We
        # are going to merge arr[left..left+size-1]
        # and arr[left+size, left+2*size-1]
        # After every merge, we increase left by 2*size
        for left in range(0, n, 2 * size):
 
            # Find ending point of left sub array
            # mid+1 is starting point of right sub array
            mid = min(n - 1, left + size - 1)
            right = min((left + 2 * size - 1), (n - 1))
 
            # Merge sub array arr[left.....mid] &
            # arr[mid+1....right]
            if mid < right:
                merge(arr, left, mid, right)
 
        size = 2 * size
 
 
# Driver program to test above function
if __name__ == "__main__":
 
    arr = [-2, 7, 15, -14, 0, 15, 0,
           7, -7, -4, -13, 5, 8, -14, 12]
 
    print("Given Array is")
    print(arr)
 
    # Function Call
    timSort(arr)
 
    print("After Sorting Array is")
    print(arr)
    

C#

// C# program to perform TimSort.
using System;
  
class GFG
{
    public const int RUN = 32;
     
    // This function sorts array from left index to
    // to right index which is of size atmost RUN
    public static void insertionSort(int[] arr,
                                int left, int right)
    {
        for (int i = left + 1; i <= right; i++)
        {
            int temp = arr[i];
            int j = i - 1;
            while (j >= left && arr[j] > temp)
            {
                arr[j+1] = arr[j];
                j--;
            }
            arr[j+1] = temp;
        }
    }
       
    // merge function merges the sorted runs
    public static void merge(int[] arr, int l,
                                   int m, int r)
    {
        // original array is broken in two parts
        // left and right array
        int len1 = m - l + 1, len2 = r - m;
        int[] left = new int[len1];
        int[] right = new int[len2];
        for (int x = 0; x < len1; x++)
            left[x] = arr[l + x];
        for (int x = 0; x < len2; x++)
            right[x] = arr[m + 1 + x];
       
        int i = 0;
        int j = 0;
        int k = l;
       
        // After comparing, we merge those two array
        // in larger sub array
        while (i < len1 && j < len2)
        {
            if (left[i] <= right[j])
            {
                arr[k] = left[i];
                i++;
            }
            else
            {
                arr[k] = right[j];
                j++;
            }
            k++;
        }
       
        // Copy remaining elements
        // of left, if any
        while (i < len1)
        {
            arr[k] = left[i];
            k++;
            i++;
        }
       
        // Copy remaining element
        // of right, if any
        while (j < len2)
        {
            arr[k] = right[j];
            k++;
            j++;
        }
    }
       
    // Iterative Timsort function to sort the
    // array[0...n-1] (similar to merge sort)
    public static void timSort(int[] arr, int n)
    {
         
        // Sort individual subarrays of size RUN
        for (int i = 0; i < n; i+=RUN)
            insertionSort(arr, i,
                         Math.Min((i+RUN-1), (n-1)));
       
        // Start merging from size RUN (or 32).
        // It will merge
        // to form size 64, then
        // 128, 256 and so on ....
        for (int size = RUN; size < n;
                                 size = 2*size)
        {
             
            // Pick starting point of
            // left sub array. We
            // are going to merge
            // arr[left..left+size-1]
            // and arr[left+size, left+2*size-1]
            // After every merge, we increase
            // left by 2*size
            for (int left = 0; left < n;
                                  left += 2*size)
            {
                 
                // Find ending point of left sub array
                // mid+1 is starting point of
                // right sub array
                int mid = left + size - 1;
                int right = Math.Min((left +
                                    2*size - 1), (n-1));
       
                // Merge sub array arr[left.....mid] &
                // arr[mid+1....right]
                  if(mid < right)
                    merge(arr, left, mid, right);
            }
        }
    }
       
    // Utility function to print the Array
    public static void printArray(int[] arr, int n)
    {
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
        Console.Write("\n");
    }
       
    // Driver program to test above function
    public static void Main()
    {
        int[] arr = {-2, 7, 15, -14, 0, 15, 0,
                   7, -7, -4, -13, 5, 8, -14, 12};
        int n = arr.Length;
        Console.Write("Given Array is\n");
        printArray(arr, n);
       
        // Function Call
        timSort(arr, n);
       
        Console.Write("After Sorting Array is\n");
        printArray(arr, n);
    }   
}
 
//This code is contributed by DrRoot_

Javascript

<script>
 
// Javascript program to perform TimSort.
let MIN_MERGE = 32;
 
function minRunLength(n)
{
     
    // Becomes 1 if any 1 bits are shifted off
    let r = 0;
    while (n >= MIN_MERGE)
    {
        r |= (n & 1);
        n >>= 1;
    }
    return n + r;
}
 
// This function sorts array from left index to
// to right index which is of size atmost RUN
function insertionSort(arr,left,right)
{
    for(let i = left + 1; i <= right; i++)
    {
        let temp = arr[i];
        let j = i - 1;
         
        while (j >= left && arr[j] > temp)
        {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = temp;
    }
}
 
// Merge function merges the sorted runs
function merge(arr, l, m, r)
{
     
    // Original array is broken in two parts
    // left and right array
    let len1 = m - l + 1, len2 = r - m;
    let left = new Array(len1);
    let right = new Array(len2);
    for(let x = 0; x < len1; x++)
    {
        left[x] = arr[l + x];
    }
    for(let x = 0; x < len2; x++)
    {
        right[x] = arr[m + 1 + x];
    }
 
    let i = 0;
    let j = 0;
    let k = l;
 
    // After comparing, we merge those two
    // array in larger sub array
    while (i < len1 && j < len2)
    {
        if (left[i] <= right[j])
        {
            arr[k] = left[i];
            i++;
        }
        else
        {
            arr[k] = right[j];
            j++;
        }
        k++;
    }
 
    // Copy remaining elements
    // of left, if any
    while (i < len1)
    {
        arr[k] = left[i];
        k++;
        i++;
    }
 
    // Copy remaining element
    // of right, if any
    while (j < len2)
    {
        arr[k] = right[j];
        k++;
        j++;
    }
}
 
// Iterative Timsort function to sort the
// array[0...n-1] (similar to merge sort)
function  timSort(arr, n)
{
    let minRun = minRunLength(MIN_MERGE);
        
    // Sort individual subarrays of size RUN
    for(let i = 0; i < n; i += minRun)
    {
        insertionSort(arr, i, Math.min(
            (i + MIN_MERGE - 1), (n - 1)));
    }
 
    // Start merging from size
    // RUN (or 32). It will
    // merge to form size 64,
    // then 128, 256 and so on
    // ....
    for(let size = minRun; size < n; size = 2 * size)
    {
         
        // Pick starting point
        // of left sub array. We
        // are going to merge
        // arr[left..left+size-1]
        // and arr[left+size, left+2*size-1]
        // After every merge, we
        // increase left by 2*size
        for(let left = 0; left < n;
                          left += 2 * size)
        {
 
            // Find ending point of left sub array
            // mid+1 is starting point of right sub
            // array
            let mid = left + size - 1;
            let right = Math.min((left + 2 * size - 1),
                                    (n - 1));
 
            // Merge sub array arr[left.....mid] &
            // arr[mid+1....right]
            if(mid < right)
                merge(arr, left, mid, right);
        }
    }
}
 
// Utility function to print the Array
function printArray(arr,n)
{
    for(let i = 0; i < n; i++)
    {
        document.write(arr[i] + " ");
    }
    document.write("<br>");
}
 
// Driver code
let arr = [ -2, 7, 15, -14, 0, 15, 0, 7,
            -7, -4, -13, 5, 8, -14, 12 ];
let n = arr.length;
document.write("Given Array is<br>");
printArray(arr, n);
timSort(arr, n);
 
document.write("After Sorting Array is<br>");
printArray(arr, n);
 
// This code is contributed by rag2127
 
</script>

Producción:

Given Array is
-2, 7, 15, -14, 0, 15, 0, 7, -7, -4, -13, 5, 8, -14, 12
After Sorting Array is
-14  -14  -13  -7  -4  -2  0  0  5  7  7  8  12  15  15

Análisis de complejidad :

Caso

Complejidad

Mejor caso

En)

Caso promedio

O(n*log(n))

Peor de los casos

O(n*log(n))

Espacio

En)

Estable

Clasificación en el lugar NO, ya que requiere espacio extra

Comparación de complejidad con Merge y Quick Sort:

Algoritmo

Complejidad del tiempo

 

Mejor

Promedio

El peor

Ordenación rápida

Ω(n*log(n))

θ(n*log(n))

O(n^2)

Ordenar por fusión

Ω(n*log(n))

θ(n*log(n))

O(n*log(n))

Ordenar por tiempo

Ω(n)

θ(n*log(n))

O(n*log(n))

Referencias:  
https://svn.python.org/projects/python/trunk/Objects/listsort.txt  
https://en.wikipedia.org/wiki/Timsort#Minimum_size_.28minrun.29  Aditya Kumar
contribuyó con este artículo . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks. Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *