Un diagrama de Youden es una representación de diagrama de dispersión de los resultados obtenidos de N laboratorios en dos materiales similares. El objetivo principal de la trama es averiguar cuál de los N laboratorios dio resultados poco confiables o defectuosos.
Estructura de la trama
Como se muestra en la figura 1, los siguientes elementos están presentes en un diagrama de Youden:
- eje x: lecturas de la muestra I de N laboratorios.
- eje y: lecturas de la muestra II de N laboratorios.
- Se dibujan dos líneas paralelas paralelas a los ejes x e y de tal manera que los puntos de datos en ambos lados de la línea sean iguales.
- Mediana de Manhattan: El punto donde las dos líneas paralelas se cruzan entre sí se conoce como la mediana de Manhattan. Se dibuja una línea de referencia de 45° que pasa por este punto.
- Hay un círculo de cobertura del 95% alrededor de la mediana de Manhattan.
Intuición
Los diagramas de Youden ayudan a comprender las variaciones que ocurren en las medidas de dos muestras similares. Habla de dos tipos de variabilidad: [Como se muestra en la Fig. 2]
- Variabilidad dentro del laboratorio: las variaciones en los resultados cuando se realizan múltiples pruebas en las dos muestras (A y B) dentro del mismo laboratorio. Conduce a problemas de repetibilidad.
- Variabilidad entre laboratorios: las variaciones en los resultados entre diferentes laboratorios que realizan pruebas en las mismas dos muestras (A y B). Conduce a problemas de reproducibilidad.
La trama también ayuda a detectar la presencia de varios tipos de errores, como errores sistemáticos y aleatorios.
Error sistemático: estos errores ocurren debido a inconsistencias presentes en el experimento, como equipo defectuoso o sin calibrar. Son reparables ya que podemos encontrar la fuente del error replicando los experimentos. Estos generalmente se encuentran dentro de un laboratorio que realiza el experimento.
Error aleatorio: estos errores no son sistemáticos ya que ocurren al azar. No se pueden arreglar debido a su naturaleza impredecible.
- Si error aleatorio >> error sistemático , entonces los puntos de datos se agruparán en el círculo alrededor de la mediana de Manhattan. Se encuentran más lejos de la línea de referencia de 45°.
- Si error sistemático >> error aleatorio , los puntos de datos se agruparán alrededor de la línea de referencia de 45° en un patrón elíptico.
Todos los puntos de datos que se encuentran fuera del círculo de cobertura se denominan valores atípicos y contribuyen al error total.
Requisito
El requisito principal de esta parcela radica en el campo médico, centrándose principalmente en el control de calidad. Ayuda a identificar varias cosas como:
- Inconsistencias como la repetibilidad y la reproducibilidad.
- Qué resultados de laboratorio son inexactos (valores atípicos)
- Comparaciones entre y entre experimentos de laboratorio.
Implementación de código en R
R
YoudenPlot <- function(A, B){ plot(A,B,asp = 1, xlab = "A", ylab = "B", pch=".") # manhattan median of sample A MMofA <- median(A) # manhattan median of sample B MMofB <- median(B) # in-built function to create horizontal and vertical lines in the plot abline(h = MMofB, v = MMofA) # in-built function to create the circle around the manhattan median. curve(x-(MMofA-MMofB),add=TRUE) d <- mean(A-B) d_prime <- A-B-d r <- 2.45*mean(abs(d_prime))*sqrt(pi)/2 t <- seq(0,2*pi,by=0.01) x <- r*cos(t)+MMofA y <- r*sin(t)+MMofB lines(x,y) } # rnorm (data_points, mean, variation) A <- rnorm(500,10,100) B <- rnorm(500,10,100) # Function call to create a sample youden plot. YoudenPlot(A,B)
Producción
El diagrama de Youden es una herramienta gráfica muy poderosa que se utiliza para analizar datos entre laboratorios y ayudar a encontrar errores dentro y entre laboratorios. Además, el diagrama de Youden se considera útil para analizar el desempeño de los laboratorios. Se utiliza de forma destacada en los campos de la investigación médica con el fin de evaluar la calidad. Para cualquier duda/consulta, comenta abajo.
Publicación traducida automáticamente
Artículo escrito por prakharr0y y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA