Dadas dos arrays ordenadas, encuentre su unión e intersección.
Ejemplo:
Entrada: arr1[] = {1, 3, 4, 5, 7}
arr2[] = {2, 3, 5, 6}
Salida: Unión: {1, 2, 3, 4, 5, 6, 7}
Intersección : {3, 5}Entrada: arr1[] = {2, 5, 6}
arr2[] = {4, 6, 8, 10}
Salida: Unión: {2, 4, 5, 6, 8, 10}
Intersección: {6}Le recomendamos encarecidamente que haga clic aquí y lo practique antes de pasar a la solución.
Unión de arreglos arr1[] y arr2[]
Para encontrar la unión de dos arrays ordenadas, siga el siguiente procedimiento de combinación:
1) Use dos variables de índice i y j, valores iniciales i = 0, j = 0
2) Si arr1[i] es menor que arr2[j], imprima arr1[i] e incremente i.
3) Si arr1[i] es mayor que arr2[j], imprima arr2[j] e incremente j.
4) Si ambos son iguales, imprima cualquiera de ellos e incremente tanto i como j.
5) Imprima los elementos restantes de la array más grande.A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find union of
// two sorted arrays
#include <bits/stdc++.h>
using
namespace
std;
/* Function prints union of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
void
printUnion(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
cout << arr1[i++] <<
" "
;
else
if
(arr2[j] < arr1[i])
cout << arr2[j++] <<
" "
;
else
{
cout << arr2[j++] <<
" "
;
i++;
}
}
/* Print remaining elements of the larger array */
while
(i < m)
cout << arr1[i++] <<
" "
;
while
(j < n)
cout << arr2[j++] <<
" "
;
}
/* Driver program to test above function */
int
main()
{
int
arr1[] = { 1, 2, 4, 5, 6 };
int
arr2[] = { 2, 3, 5, 7 };
int
m =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
n =
sizeof
(arr2) /
sizeof
(arr2[0]);
// Function calling
printUnion(arr1, arr2, m, n);
return
0;
}
C
// C program to find union of
// two sorted arrays
#include <stdio.h>
/* Function prints union of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
void
printUnion(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
printf
(
" %d "
, arr1[i++]);
else
if
(arr2[j] < arr1[i])
printf
(
" %d "
, arr2[j++]);
else
{
printf
(
" %d "
, arr2[j++]);
i++;
}
}
/* Print remaining elements of the larger array */
while
(i < m)
printf
(
" %d "
, arr1[i++]);
while
(j < n)
printf
(
" %d "
, arr2[j++]);
}
/* Driver program to test above function */
int
main()
{
int
arr1[] = { 1, 2, 4, 5, 6 };
int
arr2[] = { 2, 3, 5, 7 };
int
m =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
n =
sizeof
(arr2) /
sizeof
(arr2[0]);
printUnion(arr1, arr2, m, n);
getchar
();
return
0;
}
Java
// Java program to find union of
// two sorted arrays
class
FindUnion {
/* Function prints union of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
int
printUnion(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i =
0
, j =
0
;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
System.out.print(arr1[i++] +
" "
);
else
if
(arr2[j] < arr1[i])
System.out.print(arr2[j++] +
" "
);
else
{
System.out.print(arr2[j++] +
" "
);
i++;
}
}
/* Print remaining elements of
the larger array */
while
(i < m)
System.out.print(arr1[i++] +
" "
);
while
(j < n)
System.out.print(arr2[j++] +
" "
);
return
0
;
}
public
static
void
main(String args[])
{
int
arr1[] = {
1
,
2
,
4
,
5
,
6
};
int
arr2[] = {
2
,
3
,
5
,
7
};
int
m = arr1.length;
int
n = arr2.length;
printUnion(arr1, arr2, m, n);
}
}
Python3
# Python program to find union of
# two sorted arrays
# Function prints union of arr1[] and arr2[]
# m is the number of elements in arr1[]
# n is the number of elements in arr2[]
def
printUnion(arr1, arr2, m, n):
i, j
=
0
,
0
while
i < m
and
j < n:
if
arr1[i] < arr2[j]:
(arr1[i],end
=
" "
)
i
+
=
1
elif
arr2[j] < arr1[i]:
(arr2[j],end
=
" "
)
j
+
=
1
else
:
(arr2[j],end
=
" "
)
j
+
=
1
i
+
=
1
# Print remaining elements of the larger array
while
i < m:
(arr1[i],end
=
" "
)
i
+
=
1
while
j < n:
(arr2[j],end
=
" "
)
j
+
=
1
# Driver program to test above function
arr1
=
[
1
,
2
,
4
,
5
,
6
]
arr2
=
[
2
,
3
,
5
,
7
]
m
=
len
(arr1)
n
=
len
(arr2)
printUnion(arr1, arr2, m, n)
# This code is contributed by Pratik Chhajer
C#
// C# program to find union of
// two sorted arrays
using
System;
class
GFG {
/* Function prints union of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
int
printUnion(
int
[] arr1,
int
[] arr2,
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
Console.Write(arr1[i++] +
" "
);
else
if
(arr2[j] < arr1[i])
Console.Write(arr2[j++] +
" "
);
else
{
Console.Write(arr2[j++] +
" "
);
i++;
}
}
/* Print remaining elements of
the larger array */
while
(i < m)
Console.Write(arr1[i++] +
" "
);
while
(j < n)
Console.Write(arr2[j++] +
" "
);
return
0;
}
public
static
void
Main()
{
int
[] arr1 = { 1, 2, 4, 5, 6 };
int
[] arr2 = { 2, 3, 5, 7 };
int
m = arr1.Length;
int
n = arr2.Length;
printUnion(arr1, arr2, m, n);
}
}
// This code is contributed by Sam007
PHP
<?php
// PHP program to find union of
// two sorted arrays
/* Function prints union of
arr1[] and arr2[] m is the
number of elements in arr1[]
n is the number of elements
in arr2[] */
function
printUnion(
$arr1
,
$arr2
,
$m
,
$n
)
{
$i
= 0;
$j
= 0;
while
(
$i
<
$m
&&
$j
<
$n
)
{
if
(
$arr1
[
$i
] <
$arr2
[
$j
])
echo
(
$arr1
[
$i
++] .
" "
);
else
if
(
$arr2
[
$j
] <
$arr1
[
$i
])
echo
(
$arr2
[
$j
++] .
" "
);
else
{
echo
(
$arr2
[
$j
++] .
" "
);
$i
++;
}
}
// Print remaining elements
// of the larger array
while
(
$i
<
$m
)
echo
(
$arr1
[
$i
++] .
" "
);
while
(
$j
<
$n
)
echo
(
$arr2
[
$j
++] .
" "
);
}
// Driver Code
$arr1
=
array
(1, 2, 4, 5, 6);
$arr2
=
array
(2, 3, 5, 7);
$m
= sizeof(
$arr1
);
$n
= sizeof(
$arr2
);
// Function calling
printUnion(
$arr1
,
$arr2
,
$m
,
$n
);
// This code is contributed by Ajit.
?>
JavaScript
<script>
// JavaScript program to find union of
// two sorted arrays
/* Function prints union of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
function
printUnion( arr1, arr2, m, n)
{
var
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
document.write(arr1[i++] +
" "
);
else
if
(arr2[j] < arr1[i])
document.write(arr2[j++] +
" "
);
else
{
document.write(arr2[j++] +
" "
);
i++;
}
}
/* Print remaining elements of
the larger array */
while
(i < m)
document.write(arr1[i++] +
" "
);
while
(j < n)
document.write(arr2[j++] +
" "
);
return
0;
}
var
arr1 = [ 1, 2, 4, 5, 6 ];
var
arr2 = [ 2, 3, 5, 7 ];
var
m = arr1.length;
var
n = arr2.length;
printUnion(arr1, arr2, m, n);
// this code is contributed by shivanisinghss2110
</script>
Producción1 2 3 4 5 6 7Complejidad temporal: O(m + n)
Espacio auxiliar: O(1)Manejo de duplicados en cualquiera de las arrays: el código anterior no maneja duplicados en ninguna de las arrays. Para manejar los duplicados, simplemente verifique para cada elemento si los elementos adyacentes son iguales.
A continuación se muestra la implementación de este enfoque.
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using
namespace
std;
static
void
UnionArray(
int
arr1[],
int
arr2[],
int
l1,
int
l2)
{
// Taking max element present in either array
int
m = arr1[l1 - 1];
int
n = arr2[l2 - 1];
int
ans = 0;
if
(m > n)
ans = m;
else
ans = n;
// Finding elements from 1st array (non duplicates
// only). Using another array for storing union elements
// of both arrays Assuming max element present in array
// is not more than 10^7
int
newtable[ans + 1];
memset
(newtable, 0,
sizeof
(newtable));
// First element is always present in final answer
cout << arr1[0] <<
" "
;
// Incrementing the First element's count in it's
// corresponding index in newtable
++newtable[arr1[0]];
// Starting traversing the first array from 1st index
// till last
for
(
int
i = 1; i < l1; i++) {
// Checking whether current element is not equal to
// it's previous element
if
(arr1[i] != arr1[i - 1]) {
cout << arr1[i] <<
" "
;
++newtable[arr1[i]];
}
}
// Finding only non common elements from 2nd array
for
(
int
j = 0; j < l2; j++) {
// By checking whether it's already resent in
// newtable or not
if
(newtable[arr2[j]] == 0) {
cout << arr2[j] <<
" "
;
++newtable[arr2[j]];
}
}
}
// Driver Code
int
main()
{
int
arr1[] = { 1, 2, 2, 2, 3 };
int
arr2[] = { 2, 3, 4, 5 };
int
n =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
m =
sizeof
(arr2) /
sizeof
(arr2[0]);
UnionArray(arr1, arr2, n, m);
return
0;
}
// This code is contributed by Sania Kumari Gupta (kriSania804)
C
// C program for the above approach
#include <stdio.h>
#include <string.h>
static
void
UnionArray(
int
arr1[],
int
arr2[],
int
l1,
int
l2)
{
// Taking max element present in either array
int
m = arr1[l1 - 1];
int
n = arr2[l2 - 1];
int
ans = 0;
if
(m > n)
ans = m;
else
ans = n;
// Finding elements from 1st array (non duplicates
// only). Using another array for storing union elements
// of both arrays Assuming max element present in array
// is not more than 10^7
int
newtable[ans + 1];
for
(
int
i = 0; i < ans + 1; i++)
newtable[i] = 0;
// First element is always present in final answer
printf
(
"%d "
, arr1[0]);
// Incrementing the First element's count in it's
// corresponding index in newtable
++newtable[arr1[0]];
// Starting traversing the first array from 1st index
// till last
for
(
int
i = 1; i < l1; i++) {
// Checking whether current element is not equal to
// it's previous element
if
(arr1[i] != arr1[i - 1]) {
printf
(
"%d "
, arr1[i]);
++newtable[arr1[i]];
}
}
// Finding only non common elements from 2nd array
for
(
int
j = 0; j < l2; j++) {
// By checking whether it's already resent in
// newtable or not
if
(newtable[arr2[j]] == 0) {
printf
(
"%d "
, arr2[j]);
++newtable[arr2[j]];
}
}
}
// Driver Code
int
main()
{
int
arr1[] = { 1, 2, 2, 2, 3 };
int
arr2[] = { 2, 3, 4, 5 };
int
n =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
m =
sizeof
(arr2) /
sizeof
(arr2[0]);
UnionArray(arr1, arr2, n, m);
return
0;
}
// This code is contributed by Sania Kumari Gupta (kriSania804)
Java
// Java program to find union of two
// sorted arrays (Handling Duplicates)
class
FindUnion {
static
void
UnionArray(
int
arr1[],
int
arr2[])
{
// Taking max element present in either array
int
m = arr1[arr1.length -
1
];
int
n = arr2[arr2.length -
1
];
int
ans =
0
;
if
(m > n) {
ans = m;
}
else
ans = n;
// Finding elements from 1st array
// (non duplicates only). Using
// another array for storing union
// elements of both arrays
// Assuming max element present
// in array is not more than 10^7
int
newtable[] =
new
int
[ans +
1
];
// First element is always
// present in final answer
System.out.print(arr1[
0
] +
" "
);
// Incrementing the First element's count
// in it's corresponding index in newtable
++newtable[arr1[
0
]];
// Starting traversing the first
// array from 1st index till last
for
(
int
i =
1
; i < arr1.length; i++) {
// Checking whether current element
// is not equal to it's previous element
if
(arr1[i] != arr1[i -
1
]) {
System.out.print(arr1[i] +
" "
);
++newtable[arr1[i]];
}
}
// Finding only non common
// elements from 2nd array
for
(
int
j =
0
; j < arr2.length; j++) {
// By checking whether it's already
// present in newtable or not
if
(newtable[arr2[j]] ==
0
) {
System.out.print(arr2[j] +
" "
);
++newtable[arr2[j]];
}
}
}
// Driver Code
public
static
void
main(String args[])
{
int
arr1[] = {
1
,
2
,
2
,
2
,
3
};
int
arr2[] = {
2
,
3
,
4
,
5
};
UnionArray(arr1, arr2);
}
}
Python3
# Python3 program to find union of two
# sorted arrays (Handling Duplicates)
def
union_array(arr1, arr2):
m
=
len
(arr1)
n
=
len
(arr2)
i
=
0
j
=
0
# keep track of last element to avoid duplicates
prev
=
None
while
i < m
and
j < n:
if
arr1[i] < arr2[j]:
if
arr1[i] !
=
prev:
(arr1[i], end
=
' '
)
prev
=
arr1[i]
i
+
=
1
elif
arr1[i] > arr2[j]:
if
arr2[j] !
=
prev:
(arr2[j], end
=
' '
)
prev
=
arr2[j]
j
+
=
1
else
:
if
arr1[i] !
=
prev:
(arr1[i], end
=
' '
)
prev
=
arr1[i]
i
+
=
1
j
+
=
1
while
i < m:
if
arr1[i] !
=
prev:
(arr1[i], end
=
' '
)
prev
=
arr1[i]
i
+
=
1
while
j < n:
if
arr2[j] !
=
prev:
(arr2[j], end
=
' '
)
prev
=
arr2[j]
j
+
=
1
# Driver Code
if
__name__
=
=
"__main__"
:
arr1
=
[
1
,
2
,
2
,
2
,
3
]
arr2
=
[
2
,
3
,
4
,
5
]
union_array(arr1, arr2)
# This code is contributed by Sanjay Kumar
C#
// C# program to find union of two
// sorted arrays (Handling Duplicates)
using
System;
class
GFG {
static
void
UnionArray(
int
[] arr1,
int
[] arr2)
{
// Taking max element present
// in either array
int
m = arr1[arr1.Length - 1];
int
n = arr2[arr2.Length - 1];
int
ans = 0;
if
(m > n)
ans = m;
else
ans = n;
// Finding elements from 1st array
// (non duplicates only). Using
// another array for storing union
// elements of both arrays
// Assuming max element present
// in array is not more than 10^7
int
[] newtable =
new
int
[ans + 1];
// First element is always
// present in final answer
Console.Write(arr1[0] +
" "
);
// Incrementing the First element's
// count in it's corresponding
// index in newtable
++newtable[arr1[0]];
// Starting traversing the first
// array from 1st index till last
for
(
int
i = 1; i < arr1.Length; i++) {
// Checking whether current
// element is not equal to
// it's previous element
if
(arr1[i] != arr1[i - 1]) {
Console.Write(arr1[i] +
" "
);
++newtable[arr1[i]];
}
}
// Finding only non common
// elements from 2nd array
for
(
int
j = 0; j < arr2.Length; j++) {
// By checking whether it's already
// present in newtable or not
if
(newtable[arr2[j]] == 0) {
Console.Write(arr2[j] +
" "
);
++newtable[arr2[j]];
}
}
}
// Driver Code
public
static
void
Main()
{
int
[] arr1 = { 1, 2, 2, 2, 3 };
int
[] arr2 = { 2, 3, 4, 5 };
UnionArray(arr1, arr2);
}
}
// This code is contributed by anuj_67.
JavaScript
<script>
// javascript program to find union of two
// sorted arrays (Handling Duplicates)
function
UnionArray(arr1 , arr2) {
// Taking max element present in either array
var
m = arr1[arr1.length - 1];
var
n = arr2[arr2.length - 1];
var
ans = 0;
if
(m > n) {
ans = m;
}
else
ans = n;
// Finding elements from 1st array
// (non duplicates only). Using
// another array for storing union
// elements of both arrays
// Assuming max element present
// in array is not more than 10^7
var
newtable = Array(ans+1).fill(0);
// First element is always
// present in final answer
document.write(arr1[0] +
" "
);
// Incrementing the First element's count
// in it's corresponding index in newtable
newtable[arr1[0]]+=1;
// Starting traversing the first
// array from 1st index till last
for
(
var
i = 1; i < arr1.length; i++) {
// Checking whether current element
// is not equal to it's previous element
if
(arr1[i] != arr1[i - 1]) {
document.write(arr1[i] +
" "
);
newtable[arr1[i]]+= 1;
}
}
// Finding only non common
// elements from 2nd array
for
(
var
j = 0; j < arr2.length; j++) {
// By checking whether it's already
// present in newtable or not
if
(newtable[arr2[j]] == 0) {
document.write(arr2[j] +
" "
);
++newtable[arr2[j]];
}
}
}
// Driver Code
var
arr1 = [ 1, 2, 2, 2, 3 ];
var
arr2 = [ 2, 3, 4, 5 ];
UnionArray(arr1, arr2);
// This code is contributed by gauravrajput1
</script>
Producción1 2 3 4 5Complejidad Temporal: O(l1 + l2)
Espacio Auxiliar: O(n)Gracias a Sanjay Kumar por sugerir esta solución.
Otro enfoque usando TreeSet en Java : la idea del enfoque es construir un TreeSet e insertar todos los elementos de ambas arrays en él. Como un conjunto de árboles almacena solo valores únicos, solo conservará todos los valores únicos de ambas arrays.
A continuación se muestra la implementación del enfoque.
Java
// Java code to implement the approach
import
java.io.*;
import
java.util.*;
class
GFG {
// Function to return the union of two arrays
public
static
ArrayList<Integer>
Unionarray(
int
arr1[],
int
arr2[],
int
n,
int
m)
{
TreeSet<Integer> set =
new
TreeSet<>();
// Remove the duplicates from arr1[]
for
(
int
i : arr1)
set.add(i);
// Remove duplicates from arr2[]
for
(
int
i : arr2)
set.add(i);
// Loading set to array list
ArrayList<Integer> list
=
new
ArrayList<>();
for
(
int
i : set)
list.add(i);
return
list;
}
// Driver code
public
static
void
main(String[] args)
{
int
arr1[] = {
1
,
2
,
2
,
2
,
3
};
int
arr2[] = {
2
,
3
,
3
,
4
,
5
,
5
};
int
n = arr1.length;
int
m = arr2.length;
// Function call
ArrayList<Integer> uni
= Unionarray(arr1, arr2, n, m);
for
(
int
i : uni) {
System.out.print(i +
" "
);
}
}
}
// Contributed by ARAVA SAI TEJA
Producción1 2 3 4 5Complejidad de tiempo: O(m + n) donde ‘m’ y ‘n’ son el tamaño de las arrays
Espacio auxiliar: O(m*log(m)+n*log(n)) porque agregar un elemento a TreeSet requiere O( logn) tiempo que tomará agregar n elementos (nlogn)Gracias a Arava Sai Teja por sugerir esta solución.
Otro enfoque que usa HashMap en Java: la idea del enfoque es construir un HashMap e insertar todos los elementos. Como HashMap tiene la complejidad de O(1) para inserción y búsqueda.
A continuación se muestra la implementación del enfoque.
Java
// Java code to implement the approach
import
java.io.*;
import
java.util.*;
import
java.util.HashMap;
class
GFG {
// Function to return the union of two arrays
public
static
ArrayList<Integer>
Unionarray(
int
arr1[],
int
arr2[],
int
n,
int
m)
{
HashMap<Integer, Integer> map =
new
HashMap<Integer, Integer>();
// Remove the duplicates from arr1[]
for
(
int
i =
0
;i<arr1.length;i++)
{
if
(map.containsKey(arr1[i]))
{
map.put(arr1[i], map.get(arr1[i]) +
1
);
}
else
{
map.put(arr1[i],
1
);
}
}
// Remove duplicates from arr2[]
for
(
int
i =
0
;i<arr2.length;i++)
{
if
(map.containsKey(arr2[i]))
{
map.put(arr2[i], map.get(arr2[i]) +
1
);
}
else
{
map.put(arr2[i],
1
);
}
}
// Loading set to array list
ArrayList<Integer> list =
new
ArrayList<>();
for
(
int
i : map.keySet())
{
list.add(i);;
}
return
list;
}
// Driver code
public
static
void
main(String[] args)
{
int
arr1[] = {
1
,
2
,
2
,
2
,
3
};
int
arr2[] = {
2
,
3
,
3
,
4
,
5
,
5
};
int
n = arr1.length;
int
m = arr2.length;
System.out.println(
"Union is :"
);
// Function call
ArrayList<Integer> uni
= Unionarray(arr1, arr2, n, m);
for
(
int
i : uni) {
System.out.print(i +
" "
);
}
}
}
// This code is contributed by Aarti_Rathi
ProducciónUnion is : 1 2 3 4 5Complejidad de tiempo: O(m + n) donde ‘m’ y ‘n’ son el tamaño de las arrays
Espacio auxiliar: O(m + n)Gracias a Aarti Rathi por sugerir esta solución.
Otro enfoque optimizado : en el código anterior, usamos algo de espacio auxiliar adicional al crear newtable[]. Podemos reducir el programa de complejidad espacial para probar la función anterior a constante al verificar los elementos adyacentes al incrementar i o j de tal manera que i o j se muevan directamente al siguiente elemento distinto. Podemos realizar esta operación en el lugar (es decir, sin utilizar ningún espacio adicional).
C++
// This implementation uses vectors but can be easily modified to adapt arrays
#include <bits/stdc++.h>
using
namespace
std;
/* Helper function for printUnion().
This same function can also be implemented as a lambda function inside printUnion().
*/
void
next_distinct(
const
vector<
int
> &arr,
int
&x)
// Moving to next distinct element
{
// vector CAN be passed by reference to avoid unnecessary copies.
// x(index) MUST be passed by reference so to reflect the change in the original index parameter
/* Checks whether the previous element is equal to the current element,
if true move to the element at the next index else return with the current index
*/
do
{
++x;
}
while
(x < arr.size() && arr[x - 1] == arr[x]);
}
void
printUnion(vector<
int
> arr1, vector<
int
> arr2)
{
int
i = 0, j = 0;
while
(i < arr1.size() && j < arr2.size())
{
if
(arr1[i] < arr2[j])
{
cout << arr1[i] <<
" "
;
next_distinct(arr1, i);
// Incrementing i to next distinct element
}
else
if
(arr1[i] > arr2[j])
{
cout << arr2[j] <<
" "
;
next_distinct(arr2, j);
// Incrementing j to next distinct element
}
else
{
cout << arr1[i] <<
" "
;
// OR cout << arr2[j] << " ";
next_distinct(arr1, i);
// Incrementing i to next distinct element
next_distinct(arr2, j);
// Incrementing j to next distinct element
}
}
// Remaining elements of the larger array
while
(i < arr1.size())
{
cout << arr1[i] <<
" "
;
next_distinct(arr1, i);
// Incrementing i to next distinct element
}
while
(j < arr2.size())
{
cout << arr2[j] <<
" "
;
next_distinct(arr2, j);
// Incrementing j to next distinct element
}
}
int
main()
{
vector<
int
> arr1 = {1, 2, 2, 2, 3};
// Duplicates Present
vector<
int
> arr2 = {2, 3, 3, 4, 5, 5};
// Duplicates Present
printUnion(arr1, arr2);
return
0;
}
// This code is contributed by ciphersaini.
Producción1 2 3 4 5Complejidad de tiempo: donde m & n son los tamaños de las arrays.
Espacio Auxiliar:Intersección de arrays arr1[] y arr2[]
Para encontrar la intersección de 2 arrays ordenadas, siga el siguiente enfoque:
1) Use dos variables de índice i y j, valores iniciales i = 0, j = 0
2) Si arr1[i] es más pequeño que arr2[j] entonces incremente i.
3) Si arr1[i] es mayor que arr2[j] entonces incremente j.
4) Si ambos son iguales, imprima cualquiera de ellos e incremente tanto i como j.A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find intersection of
// two sorted arrays
#include <bits/stdc++.h>
using
namespace
std;
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
void
printIntersection(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
/* if arr1[i] == arr2[j] */
{
cout << arr2[j] <<
" "
;
i++;
j++;
}
}
}
/* Driver program to test above function */
int
main()
{
int
arr1[] = { 1, 2, 4, 5, 6 };
int
arr2[] = { 2, 3, 5, 7 };
int
m =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
n =
sizeof
(arr2) /
sizeof
(arr2[0]);
// Function calling
printIntersection(arr1, arr2, m, n);
return
0;
}
C
// C program to find intersection of
// two sorted arrays
#include <stdio.h>
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
void
printIntersection(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
/* if arr1[i] == arr2[j] */
{
printf
(
" %d "
, arr2[j++]);
i++;
}
}
}
/* Driver program to test above function */
int
main()
{
int
arr1[] = { 1, 2, 4, 5, 6 };
int
arr2[] = { 2, 3, 5, 7 };
int
m =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
n =
sizeof
(arr2) /
sizeof
(arr2[0]);
printIntersection(arr1, arr2, m, n);
getchar
();
return
0;
}
Java
// Java program to find intersection of
// two sorted arrays
class
FindIntersection {
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
void
printIntersection(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i =
0
, j =
0
;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
{
System.out.print(arr2[j++] +
" "
);
i++;
}
}
}
public
static
void
main(String args[])
{
int
arr1[] = {
1
,
2
,
4
,
5
,
6
};
int
arr2[] = {
2
,
3
,
5
,
7
};
int
m = arr1.length;
int
n = arr2.length;
printIntersection(arr1, arr2, m, n);
}
}
Python3
# Python program to find intersection of
# two sorted arrays
# Function prints Intersection of arr1[] and arr2[]
# m is the number of elements in arr1[]
# n is the number of elements in arr2[]
def
printIntersection(arr1, arr2, m, n):
i, j
=
0
,
0
while
i < m
and
j < n:
if
arr1[i] < arr2[j]:
i
+
=
1
elif
arr2[j] < arr1[i]:
j
+
=
1
else
:
(arr2[j],end
=
" "
)
j
+
=
1
i
+
=
1
# Driver program to test above function
arr1
=
[
1
,
2
,
4
,
5
,
6
]
arr2
=
[
2
,
3
,
5
,
7
]
m
=
len
(arr1)
n
=
len
(arr2)
printIntersection(arr1, arr2, m, n)
# This code is contributed by Pratik Chhajer
C#
// C# program to find Intersection of
// two sorted arrays
using
System;
class
GFG {
/* Function prints Intersection of arr1[]
and arr2[] m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
void
printIntersection(
int
[] arr1,
int
[] arr2,
int
m,
int
n)
{
int
i = 0, j = 0;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
{
Console.Write(arr2[j++] +
" "
);
i++;
}
}
}
// driver code
public
static
void
Main()
{
int
[] arr1 = { 1, 2, 4, 5, 6 };
int
[] arr2 = { 2, 3, 5, 7 };
int
m = arr1.Length;
int
n = arr2.Length;
printIntersection(arr1, arr2, m, n);
}
}
// This code is contributed by Sam007
PHP
<?php
// PHP program to find intersection of
// two sorted arrays
/* Function prints Intersection
of arr1[] and arr2[] m is the
number of elements in arr1[]
n is the number of elements
in arr2[] */
function
printIntersection(
$arr1
,
$arr2
,
$m
,
$n
)
{
$i
= 0 ;
$j
= 0;
while
(
$i
<
$m
&&
$j
<
$n
)
{
if
(
$arr1
[
$i
] <
$arr2
[
$j
])
$i
++;
else
if
(
$arr2
[
$j
] <
$arr1
[
$i
])
$j
++;
/* if arr1[i] == arr2[j] */
else
{
echo
$arr2
[
$j
],
" "
;
$i
++;
$j
++;
}
}
}
// Driver Code
$arr1
=
array
(1, 2, 4, 5, 6);
$arr2
=
array
(2, 3, 5, 7);
$m
=
count
(
$arr1
);
$n
=
count
(
$arr2
);
// Function calling
printIntersection(
$arr1
,
$arr2
,
$m
,
$n
);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// JavaScript program to find intersection of
// two sorted arrays
// Function prints Intersection of arr1[] and arr2[]
// m is the number of elements in arr1[]
// n is the number of elements in arr2[]
function
printIntersection(arr1, arr2, m, n)
{
var
i = 0, j = 0;
while
(i < m && j < n)
{
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
{
document.write(arr2[j++] +
" "
);
i++;
}
}
}
// Driver code
var
arr1 = [ 1, 2, 4, 5, 6 ];
var
arr2 = [ 2, 3, 5, 7 ];
var
m = arr1.length;
var
n = arr2.length;
printIntersection(arr1, arr2, m, n);
// This code is contributed by shivanisinghss2110
</script>
Producción2 5Complejidad temporal: O(m + n)
Espacio auxiliar: O(1)Manejo de duplicados en arrays:
el código anterior no maneja elementos duplicados en arrays. La intersección no debe contar elementos duplicados. Para manejar duplicados, simplemente verifique si el elemento actual ya está presente en la lista de intersección. A continuación se muestra la implementación de este enfoque.C++
// C++ program to find intersection of two sorted arrays
#include <bits/stdc++.h>
using
namespace
std;
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
void
print_intersection(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
int
i = 0, j = 0;
set<
int
> s;
//set for handling duplicate elements in intersection list
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
/* if arr1[i] == arr2[j] */
{
s.insert(arr2[j]);
//insertion in set s
i++;
j++;
}
}
for
(
auto
itr: s)
//printing intersection set list
{
cout<<itr<<
" "
;
}
}
/* Driver code */
int
main()
{
int
arr1[] = { 1, 2, 2, 3, 4 };
int
arr2[] = { 2, 2, 4, 6, 7, 8 };
int
m =
sizeof
(arr1) /
sizeof
(arr1[0]);
int
n =
sizeof
(arr2) /
sizeof
(arr2[0]);
// Function calling
print_intersection(arr1, arr2, m, n);
return
0;
}
// This code is contributed by Goldentiger.
Java
// Java program to find intersection of two sorted arrays
import
java.io.*;
import
java.util.*;
class
Print_Intersection {
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
void
print_intersection(
int
arr1[],
int
arr2[],
int
m,
int
n)
{
// set for handling duplicate elements in
// intersection list
Set<Integer> s =
new
TreeSet<Integer>();
int
i =
0
, j =
0
;
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
{
s.add(arr2[j++]);
// insertion in set s
i++;
}
}
for
(
int
element :
s)
// printing intersection set list
{
System.out.print(element +
" "
);
}
System.out.println(
""
);
}
public
static
void
main(String args[])
{
int
arr1[] = {
1
,
2
,
2
,
3
,
4
};
int
arr2[] = {
2
,
2
,
4
,
6
,
7
,
8
};
int
m = arr1.length;
int
n = arr2.length;
print_intersection(arr1, arr2, m, n);
}
}
// This code is contributed by CipherBhandari
Python3
# Python3 program to find Intersection of two
# Sorted Arrays (Handling Duplicates)
def
IntersectionArray(a, b, n, m):
'''
:param a: given sorted array a
:param n: size of sorted array a
:param b: given sorted array b
:param m: size of sorted array b
:return: array of intersection of two array or -1
'''
Intersection
=
[]
i
=
j
=
0
while
i < n
and
j < m:
if
a[i]
=
=
b[j]:
# If duplicate already present in Intersection list
if
len
(Intersection) >
0
and
Intersection[
-
1
]
=
=
a[i]:
i
+
=
1
j
+
=
1
# If no duplicate is present in Intersection list
else
:
Intersection.append(a[i])
i
+
=
1
j
+
=
1
elif
a[i] < b[j]:
i
+
=
1
else
:
j
+
=
1
if
not
len
(Intersection):
return
[
-
1
]
return
Intersection
# Driver Code
if
__name__
=
=
"__main__"
:
arr1
=
[
1
,
2
,
2
,
3
,
4
]
arr2
=
[
2
,
2
,
4
,
6
,
7
,
8
]
l
=
IntersectionArray(arr1, arr2,
len
(arr1),
len
(arr2))
(
*
l)
# This code is contributed by Abhishek Kumar
C#
// C# program to find Intersection of
// two sorted arrays
using
System;
using
System.Collections.Generic;
class
GFG {
/* Function prints Intersection of arr1[] and arr2[]
m is the number of elements in arr1[]
n is the number of elements in arr2[] */
static
void
print_intersection(
int
[]arr1,
int
[]arr2,
int
m,
int
n)
{
int
i = 0, j = 0;
HashSet<
int
> s =
new
HashSet<
int
>();
//set for handling duplicate elements in intersection list
while
(i < m && j < n) {
if
(arr1[i] < arr2[j])
i++;
else
if
(arr2[j] < arr1[i])
j++;
else
/* if arr1[i] == arr2[j] */
{
s.Add(arr2[j]);
//insertion in set s
i++;
j++;
}
}
foreach
(
int
k
in
s)
//printing intersection set list
{
Console.Write(k +
" "
);
}
}
// driver code
public
static
void
Main()
{
int
[] arr1 = { 1, 2, 2, 3, 4 };
int
[] arr2 = { 2, 2, 4, 6, 7, 8};
int
m = arr1.Length;
int
n = arr2.Length;
print_intersection(arr1, arr2, m, n);
}
}
// This code is contributed by Aarti_Rathi
JavaScript
<script>
// Python3 program to find Intersection of two
// Sorted Arrays (Handling Duplicates)
function
IntersectionArray(a, b, n, m){
// :param a: given sorted array a
// :param n: size of sorted array a
// :param b: given sorted array b
// :param m: size of sorted array b
// :return: array of intersection of two array or -1
Intersection = []
let i = j = 0
while
(i < n && j < m){
if
(a[i] == b[j]){
// If duplicate already present in Intersection list
if
(Intersection.length > 0 && Intersection[Intersection.length-1] == a[i]){
i+= 1
j+= 1
}
// If no duplicate is present in Intersection list
else
{
Intersection.push(a[i])
i+= 1
j+= 1
}
}
else
if
(a[i] < b[j])
i+= 1
else
j+= 1
}
if
(!Intersection.length)
return
[-1]
return
Intersection
}
// Driver Code
let arr1 = [1, 2, 2, 3, 4]
let arr2 = [2, 2, 4, 6, 7, 8]
let l = IntersectionArray(arr1, arr2, arr1.length, arr2.length)
document.write(l)
// This code is contributed by shinjanpatra
</script>
Producción2 4Complejidad de Tiempo : O(m + n)
Espacio Auxiliar : O(min(m, n))Otro enfoque utilizando Tree Set: La idea de este enfoque es construir un conjunto de árboles para almacenar los elementos únicos de arri[]. Luego compare los elementos arr2[] con el conjunto de árboles y también verifique si eso se considera en la intersección para evitar duplicados.
A continuación se muestra la implementación del enfoque.
Java
// Java code to implement the approach
import
java.io.*;
import
java.util.*;
class
GFG {
// Function to find the intersection
// of two arrays
public
static
ArrayList<Integer>
Intersection(
int
arr1[],
int
arr2[],
int
n,
int
m)
{
TreeSet<Integer> set =
new
TreeSet<>();
// Removing duplicates from first array
for
(
int
i : arr1)
set.add(i);
ArrayList<Integer> list
=
new
ArrayList<>();
// Avoiding duplicates and
// adding intersections
for
(
int
i : arr2)
if
(set.contains(i)
&& !list.contains(i))
list.add(i);
// Sorting
Collections.sort(list);
return
list;
}
// Driver code
public
static
void
main(String[] args)
{
int
arr1[] = {
1
,
2
,
4
,
5
,
6
};
int
arr2[] = {
2
,
3
,
5
,
7
};
int
n = arr1.length;
int
m = arr2.length;
// Function call
ArrayList<Integer> inter
= Intersection(arr1, arr2, n, m);
for
(
int
i : inter) {
System.out.print(i +
" "
);
}
}
}
// Contributed by ARAVA SAI TEJA
Producción2 5Tiempo Complejidad: O(m+n)
Espacio Auxiliar: O(m+n)Gracias a Arava Sai Teja por sugerir esta solución.
Otro enfoque que es útil cuando la diferencia entre los tamaños de dos arrays dadas es significativa.
La idea es iterar a través de la array más corta y hacer una búsqueda binaria para cada elemento de la array corta en la array grande (tenga en cuenta que las arrays están ordenadas). La complejidad temporal de esta solución es O(min(mLogn, nLogm)). Esta solución funciona mejor que el enfoque anterior cuando la relación entre longitudes más grandes y más pequeñas es mayor que el orden logarítmico.Consulte la siguiente publicación para arrays sin clasificar.
Encuentre la unión y la intersección de dos arrays no ordenadas
Escriba comentarios si encuentra algún error en los códigos/algoritmos anteriores, o encuentre otras formas de resolver el mismo problema.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA