Valor máximo AND bit a bit de la subsecuencia de longitud K

Dada una array a de tamaño N y un número entero K . La tarea es encontrar el máximo bit a bit y el valor de los elementos de cualquier subsecuencia de longitud K
Nota : a[i] <= 10 9  
Ejemplos: 
 

Entrada: a[] = {10, 20, 15, 4, 14}, K = 4 
Salida:
{20, 15, 4, 14} es la subsecuencia con el valor ‘&’ más alto. 
Entrada: a[] = {255, 127, 31, 5, 24, 37, 15}, K = 5 
Salida: 8

Enfoque ingenuo : un enfoque ingenuo es encontrar recursivamente el bit a bit y el valor de todas las subsecuencias de longitud K y el máximo entre todos ellos será la respuesta. 
Enfoque eficiente : un enfoque eficiente es resolverlo usando propiedades de bits . A continuación se muestran los pasos para resolver el problema: 
 

  • Iterar desde la izquierda (inicialmente izquierda = 31 como 2 32 > 10 9 ) hasta que encontremos > K números en el vector temp (inicialmente temp = arr ) cuyo i-ésimo bit está configurado. Actualice el nuevo conjunto de números a la array temporal
  • Si no obtenemos > K números, el valor & de cualquier elemento K en la array temporal será el valor & máximo posible.
  • Repita el paso 1 con la izquierda reiniciada como primer bit + 1 .

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find the sum of
// the addition of all possible subsets.
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform step-1
vector<int> findSubset(vector<int>& temp, int& last, int k)
{
    vector<int> ans;
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--) {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        for (auto it : temp) {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k) {
            for (auto it : temp) {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.push_back(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
 
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
int findMaxiumAnd(int a[], int n, int k)
{
    int last = 31;
    // Temporary arrays
    vector<int> temp1, temp2;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++) {
        temp2.push_back(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.size() >= k) {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, last, k);
    }
 
    // Find the & value
    int ans = temp1[0];
    for (int i = 0; i < k; i++)
        ans = ans & temp1[i];
 
    return ans;
}
 
// Driver Code
int main()
{
    int a[] = { 255, 127, 31, 5, 24, 37, 15 };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 4;
 
    cout << findMaxiumAnd(a, n, k);
}

Java

// Java program to find the sum of
// the addition of all possible subsets.
import java.util.*;
class GFG
{
static int last;
 
// Function to perform step-1
static Vector<Integer>
       findSubset(Vector<Integer> temp, int k)
{
    Vector<Integer> ans = new Vector<Integer>();
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--)
    {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        for (Integer it : temp)
        {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            for (Integer it : temp)
            {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.add(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
static int findMaxiumAnd(int a[], int n, int k)
{
    last = 31;
     
    // Temporary arrays
    Vector<Integer> temp1 = new Vector<Integer>();
    Vector<Integer> temp2 = new Vector<Integer>();;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++)
    {
        temp2.add(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.size() >= k)
    {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
 
    // Find the & value
    int ans = temp1.get(0);
    for (int i = 0; i < k; i++)
        ans = ans & temp1.get(i);
 
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int a[] = { 255, 127, 31, 5, 24, 37, 15 };
    int n = a.length;
    int k = 4;
 
    System.out.println(findMaxiumAnd(a, n, k));
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to find the sum of
# the addition of all possible subsets.
last = 31
 
# Function to perform step-1
def findSubset(temp, k):
    global last
    ans = []
 
    # Iterate from left till 0
    # till we get a bit set of K numbers
    for i in range(last, -1, -1):
        cnt = 0
 
        # Count the numbers whose
        # i-th bit is set
        for it in temp:
            bit = it & (1 << i)
            if (bit > 0):
                cnt += 1
 
        # If the array has numbers>=k
        # whose i-th bit is set
        if (cnt >= k):
            for it in temp:
                bit = it & (1 << i)
                if (bit > 0):
                    ans.append(it)
 
            # Update last
            last = i - 1
 
            # Return the new set of numbers
            return ans
 
    return ans
 
# Function to find the maximum '&' value
# of K elements in subsequence
def findMaxiumAnd(a, n, k):
    global last
 
    # Temporary arrays
    temp1, temp2, = [], []
 
    # Initially temp = arr
    for i in range(n):
        temp2.append(a[i])
 
    # Iterate till we have >=K elements
    while len(temp2) >= k:
 
        # Temp array
        temp1 = temp2
 
        # Find new temp array if
        # K elements are there
        temp2 = findSubset(temp2, k)
 
    # Find the & value
    ans = temp1[0]
    for i in range(k):
        ans = ans & temp1[i]
 
    return ans
 
# Driver Code
a = [255, 127, 31, 5, 24, 37, 15]
n = len(a)
k = 4
 
print(findMaxiumAnd(a, n, k))
 
# This code is contributed by Mohit Kumar

C#

// C# program to find the sum of
// the addition of all possible subsets.
using System;
using System.Collections.Generic;
 
class GFG
{
static int last;
 
// Function to perform step-1
static List<int>findSubset(List<int> temp, int k)
{
    List<int> ans = new List<int>();
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--)
    {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        foreach (int it in temp)
        {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            foreach (int it in temp)
            {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.Add(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
static int findMaxiumAnd(int []a, int n, int k)
{
    last = 31;
     
    // Temporary arrays
    List<int> temp1 = new List<int>();
    List<int> temp2 = new List<int>();;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++)
    {
        temp2.Add(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.Count >= k)
    {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
 
    // Find the & value
    int ans = temp1[0];
    for (int i = 0; i < k; i++)
        ans = ans & temp1[i];
 
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []a = { 255, 127, 31, 5, 24, 37, 15 };
    int n = a.Length;
    int k = 4;
 
    Console.WriteLine(findMaxiumAnd(a, n, k));
}
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
// Javascript program to find the sum of
// the addition of all possible subsets.
 
// Function to perform step-1
function findSubset(temp,k)
{
    let ans = [];
   
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (let i = last; i >= 0; i--)
    {
        let cnt = 0;
   
        // Count the numbers whose
        // i-th bit is set
        for (let it=0;it< temp.length;it++)
        {
            let bit = temp[it] & (1 << i);
            if (bit > 0)
                cnt++;
        }
   
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            for (let it=0;it< temp.length;it++)
            {
                let bit = temp[it] & (1 << i);
                if (bit > 0)
                    ans.push(temp[it]);
            }
   
            // Update last
            last = i - 1;
   
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
function findMaxiumAnd(a,n,k)
{
    last = 31;
       
    // Temporary arrays
    let temp1 = [];
    let temp2 = [];
   
    // Initially temp = arr
    for (let i = 0; i < n; i++)
    {
        temp2.push(a[i]);
    }
   
    // Iterate till we have >=K elements
    while (temp2.length >= k)
    {
   
        // Temp array
        temp1 = temp2;
   
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
   
    // Find the & value
    let ans = temp1[0];
    for (let i = 0; i < k; i++)
        ans = ans & temp1[i];
   
    return ans;
}
 
// Driver Code
let a=[255, 127, 31, 5, 24, 37, 15 ];
let n = a.length;
let k = 4;
document.write(findMaxiumAnd(a, n, k));
 
 
 
// This code is contributed by unknown2108
</script>
Producción: 

24

 

Complejidad de tiempo: O (N * N), ya que estamos usando un bucle para atravesar N veces y en cada recorrido estamos llamando a la función findSubset que costará O (N) tiempo. Donde N es el número de elementos de la array.

Espacio auxiliar: O (N), ya que estamos usando espacio adicional para la array temporal. Donde N es el número de elementos de la array.

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *