Dados dos árboles binarios S y T, la tarea es comprobar que si S es un subárbol del árbol T.
Por ejemplo:
Input: Tree T - 1 / \ 2 3 / \ / \ 4 5 6 7 Tree S - 2 / \ 4 5 Output: YES Explanation: The above tree is the subtree of the tree T, Hence the output is YES
Enfoque: La idea es atravesar tanto el árbol en Pre-order Traversal y verificar para cada Node del árbol que Pre-order traversal de ese árbol es el mismo que Pre-order Traversal del árbol S cuidando los valores nulos es decir, al incluir los valores nulos en la lista Recorrido, porque si no se tienen en cuenta los valores nulos, dos árboles diferentes pueden tener el mismo recorrido preordenado. Como en el caso de debajo de los árboles –
1 1 / \ / \ 2 N N 2 / \ / \ N N N N Pre-order Traversal of both the trees will be - {1, 2} - In case of without taking care of null values {1, 2, N, N, N} and {1, N, 2, N, N} In case of taking care of null values.
Algoritmo:
- Declare una pila, para realizar un seguimiento del hijo izquierdo y derecho de los Nodes.
- Empuje el Node raíz del árbol T.
- Ejecute un ciclo mientras la pila no está vacía y luego verifique que si el recorrido de pedido anticipado del Node superior de la pila es el mismo, devuelva verdadero.
- Si el recorrido de pedido anticipado no coincide con el árbol, extraiga el Node superior de la pila y empuje su hijo izquierdo y derecho del Node extraído.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to check // if a tree is a subtree of // another binary tree #include <bits/stdc++.h> using namespace std; // Structure of the // binary tree node struct Node { int data; struct Node* left; struct Node* right; }; // Function to create // new node Node* newNode(int x) { Node* temp = (Node*)malloc( sizeof(Node)); temp->data = x; temp->left = NULL; temp->right = NULL; return temp; } // Function to check if two trees // have same pre-order traversal bool areTreeIdentical(Node* t1, Node* t2) { stack<Node*> s1; stack<Node*> s2; Node* temp1; Node* temp2; s1.push(t1); s2.push(t2); // Loop to iterate over the stacks while (!s1.empty() && !s2.empty()) { temp1 = s1.top(); temp2 = s2.top(); s1.pop(); s2.pop(); // Both are None // hence they are equal if (temp1 == NULL && temp2 == NULL) continue; // nodes are unequal if ((temp1 == NULL && temp2 != NULL) || (temp1 != NULL && temp2 == NULL)) return false; // nodes have unequal data if (temp1->data != temp2->data) return false; s1.push(temp1->right); s2.push(temp2->right); s1.push(temp1->left); s2.push(temp2->left); } // if both tree are identical // both stacks must be empty. if (s1.empty() && s2.empty()) return true; else return false; } // Function to check if the Tree s // is the subtree of the Tree T bool isSubTree(Node* s, Node* t) { // first we find the root of s in t // by traversing in pre order fashion stack<Node*> stk; Node* temp; stk.push(t); while (!stk.empty()) { temp = stk.top(); stk.pop(); // if current node data is equal // to root of s then if (temp->data == s->data) { if (areTreeIdentical(s, temp)) return true; } if (temp->right) stk.push(temp->right); if (temp->left) stk.push(temp->left); } return false; } // Driver Code int main() { /* 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); /* 2 / \ 4 5 */ Node* root2 = newNode(2); root2->left = newNode(4); root2->right = newNode(5); if (isSubTree(root2, root)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java implementation to check // if a tree is a subtree of // another binary tree import java.util.*; class GFG{ // Structure of the // binary tree node static class Node { int data; Node left; Node right; }; // Function to create // new node static Node newNode(int x) { Node temp = new Node(); temp.data = x; temp.left = null; temp.right = null; return temp; } // Function to check if two trees // have same pre-order traversal static boolean areTreeIdentical(Node t1, Node t2) { Stack<Node> s1 = new Stack<Node>(); Stack<Node> s2 = new Stack<Node>(); Node temp1; Node temp2; s1.add(t1); s2.add(t2); // Loop to iterate over the stacks while (!s1.isEmpty() && !s2.isEmpty()) { temp1 = s1.peek(); temp2 = s2.peek(); s1.pop(); s2.pop(); // Both are None // hence they are equal if (temp1 == null && temp2 == null) continue; // nodes are unequal if ((temp1 == null && temp2 != null) || (temp1 != null && temp2 == null)) return false; // nodes have unequal data if (temp1.data != temp2.data) return false; s1.add(temp1.right); s2.add(temp2.right); s1.add(temp1.left); s2.add(temp2.left); } // if both tree are identical // both stacks must be empty. if (s1.isEmpty() && s2.isEmpty()) return true; else return false; } // Function to check if the Tree s // is the subtree of the Tree T static boolean isSubTree(Node s, Node t) { // first we find the root of s in t // by traversing in pre order fashion Stack<Node> stk = new Stack<Node>(); Node temp; stk.add(t); while (!stk.isEmpty()) { temp = stk.peek(); stk.pop(); // if current node data is equal // to root of s then if (temp.data == s.data) { if (areTreeIdentical(s, temp)) return true; } if (temp.right != null) stk.add(temp.right); if (temp.left != null) stk.add(temp.left); } return false; } // Driver Code public static void main(String[] args) { /* 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); /* 2 / \ 4 5 */ Node root2 = newNode(2); root2.left = newNode(4); root2.right = newNode(5); if (isSubTree(root2, root)) System.out.print("Yes"); else System.out.print("No"); } } // This code is contributed by Rajput-Ji
Python3
# Python3 implementation to check # if a tree is a subtree of # another binary tree # Structure of the # binary tree node class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to check if two trees # have same pre-order traversal def areTreeIdentical(t1 : Node, t2 : Node) -> bool: s1 = [] s2 = [] s1.append(t1) s2.append(t2) # Loop to iterate # over the stacks while s1 and s2: temp1 = s1.pop() temp2 = s2.pop() # Both are None # hence they are equal if (temp1 is None and temp2 is None): continue # Nodes are unequal if ((temp1 is None and temp2 is not None) or (temp1 is not None and temp2 is None)): return False # Nodes have unequal data if (temp1.data != temp2.data): return False s1.append(temp1.right) s2.append(temp2.right) s1.append(temp1.left) s2.append(temp2.left) # If both tree are identical # both stacks must be empty. if s1 and s2: return False return True # Function to check if the Tree s # is the subtree of the Tree T def isSubTree(s : Node, t : Node) -> Node: # First we find the # root of s in t # by traversing in # pre order fashion stk = [] stk.append(t) while stk: temp = stk.pop() # If current node data is equal # to root of s then if (temp.data == s.data): if (areTreeIdentical(s, temp)): return True if (temp.right): stk.append(temp.right) if (temp.left): stk.append(temp.left) return False # Driver Code if __name__ == "__main__": ''' 1 / \ 2 3 / \ / \ 4 5 6 7 ''' root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) ''' 2 / \ 4 5 ''' root2 = Node(2) root2.left = Node(4) root2.right = Node(5) if (isSubTree(root2, root)): print("Yes") else: print("No") # This code is contributed by sanjeev2552
C#
// C# implementation to check // if a tree is a subtree of // another binary tree using System; using System.Collections.Generic; class GFG{ // Structure of the // binary tree node class Node { public int data; public Node left; public Node right; }; // Function to create // new node static Node newNode(int x) { Node temp = new Node(); temp.data = x; temp.left = null; temp.right = null; return temp; } // Function to check if two trees // have same pre-order traversal static bool areTreeIdentical(Node t1, Node t2) { Stack<Node> s1 = new Stack<Node>(); Stack<Node> s2 = new Stack<Node>(); Node temp1; Node temp2; s1.Push(t1); s2.Push(t2); // Loop to iterate over the stacks while (s1.Count != 0 && s2.Count != 0) { temp1 = s1.Peek(); temp2 = s2.Peek(); s1.Pop(); s2.Pop(); // Both are None // hence they are equal if (temp1 == null && temp2 == null) continue; // nodes are unequal if ((temp1 == null && temp2 != null) || (temp1 != null && temp2 == null)) return false; // nodes have unequal data if (temp1.data != temp2.data) return false; s1.Push(temp1.right); s2.Push(temp2.right); s1.Push(temp1.left); s2.Push(temp2.left); } // if both tree are identical // both stacks must be empty. if (s1.Count == 0 && s2.Count == 0) return true; else return false; } // Function to check if the Tree s // is the subtree of the Tree T static bool isSubTree(Node s, Node t) { // first we find the root of s in t // by traversing in pre order fashion Stack<Node> stk = new Stack<Node>(); Node temp; stk.Push(t); while (stk.Count != 0) { temp = stk.Peek(); stk.Pop(); // if current node data is equal // to root of s then if (temp.data == s.data) { if (areTreeIdentical(s, temp)) return true; } if (temp.right != null) stk.Push(temp.right); if (temp.left != null) stk.Push(temp.left); } return false; } // Driver Code public static void Main(String[] args) { /* 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); /* 2 / \ 4 5 */ Node root2 = newNode(2); root2.left = newNode(4); root2.right = newNode(5); if (isSubTree(root2, root)) Console.Write("Yes"); else Console.Write("No"); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript implementation to check // if a tree is a subtree of // another binary tree // Structure of the // binary tree node class Node { constructor() { this.data = 0; this.left = null; this.right = null; } }; // Function to create // new node function newNode(x) { var temp = new Node(); temp.data = x; temp.left = null; temp.right = null; return temp; } // Function to check if two trees // have same pre-order traversal function areTreeIdentical(t1, t2) { var s1 = []; var s2 = []; var temp1 = null; var temp2 = null; s1.push(t1); s2.push(t2); // Loop to iterate over the stacks while (s1.length != 0 && s2.length != 0) { temp1 = s1[s1.length - 1]; temp2 = s2[s2.length - 1]; s1.pop(); s2.pop(); // Both are None // hence they are equal if (temp1 == null && temp2 == null) continue; // Nodes are unequal if ((temp1 == null && temp2 != null) || (temp1 != null && temp2 == null)) return false; // Nodes have unequal data if (temp1.data != temp2.data) return false; s1.push(temp1.right); s2.push(temp2.right); s1.push(temp1.left); s2.push(temp2.left); } // If both tree are identical // both stacks must be empty. if (s1.length == 0 && s2.length == 0) return true; else return false; } // Function to check if the Tree s // is the subtree of the Tree T function isSubTree(s, t) { // First we find the root of s in t // by traversing in pre order fashion var stk = []; var temp; stk.push(t); while (stk.length != 0) { temp = stk[stk.length - 1]; stk.pop(); // If current node data is equal // to root of s then if (temp.data == s.data) { if (areTreeIdentical(s, temp)) return true; } if (temp.right != null) stk.push(temp.right); if (temp.left != null) stk.push(temp.left); } return false; } // Driver Code /* 1 / \ 2 3 / \ / \ 4 5 6 7 */ var root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); /* 2 / \ 4 5 */ var root2 = newNode(2); root2.left = newNode(4); root2.right = newNode(5); if (isSubTree(root2, root)) document.write("Yes"); else document.write("No"); // This code is contributed by rutvik_56 </script>
Yes
Complejidad de tiempo : O(N) donde N no es ningún Node en un árbol binario
Espacio Auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por Kashish_070250 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA