Dado un número, la tarea es encontrar XOR de conteo de 0s y conteo de 1s en representación binaria de un número dado.
Ejemplos:
Input : 5 Output : 3 Binary representation : 101 Count of 0s = 1, Count of 1s = 2 1 XOR 2 = 3. Input : 7 Output : 3 Binary representation : 111 Count of 0s = 0 Count of 1s = 3 0 XOR 3 = 3.
C++
// C++ program to find XOR of counts 0s and 1s in // binary representation of n. #include<iostream> using namespace std; // Returns XOR of counts 0s and 1s in // binary representation of n. int countXOR(int n) { int count0 = 0, count1 = 0; while (n) { //calculating count of zeros and ones (n % 2 == 0) ? count0++ :count1++; n /= 2; } return (count0 ^ count1); } // Driver Program int main() { int n = 31; cout << countXOR (n); return 0; }
Java
// Java program to find XOR of counts 0s // and 1s in binary representation of n. class GFG { // Returns XOR of counts 0s and 1s // in binary representation of n. static int countXOR(int n) { int count0 = 0, count1 = 0; while (n != 0) { //calculating count of zeros and ones if(n % 2 == 0) count0++ ; else count1++; n /= 2; } return (count0 ^ count1); } // Driver Program public static void main(String[] args) { int n = 31; System.out.println(countXOR (n)); } } // This code is contributed by prerna saini
Python3
# Python3 program to find XOR of counts 0s # and 1s in binary representation of n. # Returns XOR of counts 0s and 1s # in binary representation of n. def countXOR(n): count0, count1 = 0, 0 while (n != 0): # calculating count of zeros and ones if(n % 2 == 0): count0 += 1 else: count1 += 1 n //= 2 return (count0 ^ count1) # Driver Code n = 31 print(countXOR(n)) # This code is contributed by Anant Agarwal.
C#
// C# program to find XOR of counts 0s // and 1s in binary representation of n. using System; class GFG { // Returns XOR of counts 0s and 1s // in binary representation of n. static int countXOR(int n) { int count0 = 0, count1 = 0; while (n != 0) { // calculating count of zeros // and ones if(n % 2 == 0) count0++ ; else count1++; n /= 2; } return (count0 ^ count1); } // Driver Program public static void Main() { int n = 31; Console.WriteLine(countXOR (n)); } } // This code is contributed by Anant Agarwal.
PHP
<?PHP // PHP program to find XOR of // counts 0s and 1s in binary // representation of n. // Returns XOR of counts 0s and 1s // in binary representation of n. function countXOR($n) { $count0 = 0; $count1 = 0; while ($n) { // calculating count of // zeros and ones ($n % 2 == 0) ? $count0++ :$count1++; $n = intval($n / 2); } return ($count0 ^ $count1); } // Driver Code $n = 31; echo countXOR ($n); // This code is contributed // by ChitraNayal ?>
Javascript
<script> // Javascript program to find XOR of counts 0s // and 1s in binary representation of n. // Returns XOR of counts 0s and 1s // in binary representation of n. function countXOR(n) { let count0 = 0, count1 = 0; while (n != 0) { //calculating count of zeros and ones if(n % 2 == 0) count0++ ; else count1++; n = Math.floor(n/2); } return (count0 ^ count1); } // Driver Program let n = 31; document.write(countXOR (n)); // This code is contributed by avanitrachhadiya2155 </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA