Dada una array A[] de enteros y una array Q que consta de consultas de los siguientes dos tipos:
- (1, L, R) : Devuelve XOR de todos los elementos presentes entre los índices L y R .
- (2, I, val) : actualice A[I] a A[I] XOR val .
La tarea es resolver cada consulta e imprimir el XOR para cada Consulta de 1er tipo, utilizando Fenwick Tree .
Ejemplos:
Entrada: A[] = {2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9}
Q = {{ 1, 3, 8}, {2, 4, 6}, {1, 3, 8}}
Salida:
XOR de elementos en el rango de 3 a 8 es 5
XOR de elementos en el rango de 3 a 8 es 3
Explicación:
XOR de subarreglo { 3, 2, 3, 4, 5, 6 } es 5 Después de
la segunda consulta, arr[4] se reemplaza por 4.
Xor del subarreglo { 3, 4, 3, 4, 5, 6 } es 3.
Entrada: A[] = {2, 1, 1, 3, 2, 3 , 4, 5, 6, 7, 8, 9}
Q = {{1, 0, 9}, {2, 3, 6}, {2, 5, 5}, {2, 8, 1}, {1 , 0, 9}}
Salida:
XOR de elementos en el rango de 0 a 9 es 0
XOR de elementos en el rango de 0 a 9 es 2
Acercarse:
- Para la consulta de tipo 1, devuelve el Xor de los elementos en el rango [1, R] y el rango [1, L-1] usando getXor().
- En getXor(), para i a partir del índice de todos sus ancestros hasta 1, siga calculando XOR con BITree[i] . Para obtener el ancestro del i-ésimo índice en la vista getXor() , solo necesitamos restar el LSB (bit menos significativo) de i por i = i – i&(-i) . Finalmente devuelva el valor XOR final.
- Para consultas de tipo 2, actualice A[index] a A[index] ^ val . Actualice todos los rangos que incluyen este elemento en BITree[] llamando a updateBIT() .
- En updateBIT(), para cada i a partir del índice de todos sus ancestros hasta N , actualice BITree[i] como BITree[i] ^ val . Para obtener el ancestro del i-ésimo índice en la vista updateBit() , solo necesitamos agregar LSB (bit menos significativo) de i by i = i + i&(-i) .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find XOR of // elements in given range [L, R]. #include <bits/stdc++.h> using namespace std; // Returns XOR of arr[0..index]. // This function assumes that the // array is preprocessed and partial // XORs of array elements are stored // in BITree[]. int getXOR(int BITree[], int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // XOR current element // of BIT to ans ans ^= BITree[index]; // Update index to that // of the parent node in // getXor() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Updates the Binary Index Tree by // replacing all ancestors of index // by their respective XOR with val void updateBIT(int BITree[], int n, int index, int val) { index = index + 1; // Traverse all ancestors // and XOR with 'val'. while (index <= n) { // XOR 'val' to current // node of BIT BITree[index] ^= val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Constructs and returns a Binary // Indexed Tree for the given array int* constructBITree(int arr[], int n) { // Create and initialize // the Binary Indexed Tree int* BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for (int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } int rangeXor(int BITree[], int l, int r) { return getXOR(BITree, r) ^ getXOR(BITree, l - 1); } // Driver Code int main() { int A[] = { 2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9 }; int n = sizeof(A) / sizeof(A[0]); vector<vector<int> > q = { { 1, 0, 9 }, { 2, 3, 6 }, { 2, 5, 5 }, { 2, 8, 1 }, { 1, 0, 9 } }; // Create the Binary Indexed Tree int* BITree = constructBITree(A, n); // Solve each query in Q for (int i = 0; i < q.size(); i++) { int id = q[i][0]; if (id == 1) { int L = q[i][1]; int R = q[i][2]; cout << "XOR of elements " << "in given range is " << rangeXor(BITree, L, R) << "\n"; } else { int idx = q[i][1]; int val = q[i][2]; A[idx] ^= val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } } return 0; }
Java
// Java Program to find XOR of // elements in given range [L, R]. import java.util.*; class GFG{ // Returns XOR of arr[0..index]. // This function assumes that the // array is preprocessed and partial // XORs of array elements are stored // in BITree[]. static int getXOR(int BITree[], int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // XOR current element // of BIT to ans ans ^= BITree[index]; // Update index to that // of the parent node in // getXor() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Updates the Binary Index Tree by // replacing all ancestors of index // by their respective XOR with val static void updateBIT(int BITree[], int n, int index, int val) { index = index + 1; // Traverse all ancestors // and XOR with 'val'. while (index <= n) { // XOR 'val' to current // node of BIT BITree[index] ^= val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Constructs and returns a Binary // Indexed Tree for the given array static int[] constructBITree(int arr[], int n) { // Create and initialize // the Binary Indexed Tree int []BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for (int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } static int rangeXor(int BITree[], int l, int r) { return getXOR(BITree, r) ^ getXOR(BITree, l - 1); } // Driver Code public static void main(String[] args) { int A[] = { 2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9 }; int n = A.length; int [][]q = { { 1, 0, 9 }, { 2, 3, 6 }, { 2, 5, 5 }, { 2, 8, 1 }, { 1, 0, 9 } }; // Create the Binary Indexed Tree int []BITree = constructBITree(A, n); // Solve each query in Q for (int i = 0; i < q.length; i++) { int id = q[i][0]; if (id == 1) { int L = q[i][1]; int R = q[i][2]; System.out.print("XOR of elements " + "in given range is " + rangeXor(BITree, L, R) + "\n"); } else { int idx = q[i][1]; int val = q[i][2]; A[idx] ^= val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } } } } // This code is contributed by Princi Singh
Python3
# Python3 program to find XOR of # elements in given range [L, R]. # Returns XOR of arr[0..index]. # This function assumes that the # array is preprocessed and partial # XORs of array elements are stored # in BITree[]. def getXOR(BITree, index): ans = 0 index += 1 # Traverse ancestors # of BITree[index] while (index > 0): # XOR current element # of BIT to ans ans ^= BITree[index] # Update index to that # of the parent node in # getXor() view by # subtracting LSB(Least # Significant Bit) index -= index & (-index) return ans # Updates the Binary Index Tree by # replacing all ancestors of index # by their respective XOR with val def updateBIT(BITree, n, index, val): index = index + 1 # Traverse all ancestors # and XOR with 'val'. while (index <= n): # XOR 'val' to current # node of BIT BITree[index] ^= val # Update index to that # of the parent node in # updateBit() view by # adding LSB(Least # Significant Bit) index += index & (-index) # Constructs and returns a Binary # Indexed Tree for the given array def constructBITree(arr, n): # Create and initialize # the Binary Indexed Tree BITree = [0] * (n + 1) # Store the actual values in # BITree[] using update() for i in range(n): updateBIT(BITree, n, i, arr[i]) return BITree def rangeXor(BITree, l, r): return (getXOR(BITree, r) ^ getXOR(BITree, l - 1)) # Driver Code if __name__ == "__main__": A = [ 2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9 ] n = len(A) q = [ [ 1, 0, 9 ], [ 2, 3, 6 ], [ 2, 5, 5 ], [ 2, 8, 1 ], [ 1, 0, 9 ] ] # Create the Binary Indexed Tree BITree = constructBITree(A, n) # Solve each query in Q for i in range(len(q)): id = q[i][0] if (id == 1): L = q[i][1] R = q[i][2] print("XOR of elements in " "given range is ", rangeXor(BITree, L, R)) else: idx = q[i][1] val = q[i][2] A[idx] ^= val # Update the values of all # ancestors of idx updateBIT(BITree, n, idx, val) # This code is contributed by jana_sayantan
C#
// C# program to find XOR of // elements in given range [L, R]. using System; class GFG{ // Returns XOR of arr[0..index]. // This function assumes that the // array is preprocessed and partial // XORs of array elements are stored // in BITree[]. static int getXOR(int []BITree, int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // XOR current element // of BIT to ans ans ^= BITree[index]; // Update index to that // of the parent node in // getXor() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Updates the Binary Index Tree by // replacing all ancestors of index // by their respective XOR with val static void updateBIT(int []BITree, int n, int index, int val) { index = index + 1; // Traverse all ancestors // and XOR with 'val'. while (index <= n) { // XOR 'val' to current // node of BIT BITree[index] ^= val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Constructs and returns a Binary // Indexed Tree for the given array static int[] constructBITree(int []arr, int n) { // Create and initialize // the Binary Indexed Tree int []BITree = new int[n + 1]; for(int i = 1; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for(int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } static int rangeXor(int []BITree, int l, int r) { return getXOR(BITree, r) ^ getXOR(BITree, l - 1); } // Driver Code public static void Main(String[] args) { int []A = { 2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9 }; int n = A.Length; int [,]q = { { 1, 0, 9 }, { 2, 3, 6 }, { 2, 5, 5 }, { 2, 8, 1 }, { 1, 0, 9 } }; // Create the Binary Indexed Tree int []BITree = constructBITree(A, n); // Solve each query in Q for(int i = 0; i < q.GetLength(0); i++) { int id = q[i, 0]; if (id == 1) { int L = q[i, 1]; int R = q[i, 2]; Console.Write("XOR of elements " + "in given range is " + rangeXor(BITree, L, R) + "\n"); } else { int idx = q[i, 1]; int val = q[i, 2]; A[idx] ^= val; // Update the values of // all ancestors of idx updateBIT(BITree, n, idx, val); } } } } // This code is contributed by sapnasingh4991
Javascript
<script> // Javascript Program to find XOR of // elements in given range [L, R]. // Returns XOR of arr[0..index]. // This function assumes that the // array is preprocessed and partial // XORs of array elements are stored // in BITree[]. function getXOR(BITree, index) { let ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // XOR current element // of BIT to ans ans ^= BITree[index]; // Update index to that // of the parent node in // getXor() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Updates the Binary Index Tree by // replacing all ancestors of index // by their respective XOR with val function updateBIT(BITree, n, index, val) { index = index + 1; // Traverse all ancestors // and XOR with 'val'. while (index <= n) { // XOR 'val' to current // node of BIT BITree[index] ^= val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Constructs and returns a Binary // Indexed Tree for the given array function constructBITree(arr, n) { // Create and initialize // the Binary Indexed Tree let BITree = new Array(n + 1); for (let i = 1; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for (let i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } function rangeXor(BITree, l, r) { return getXOR(BITree, r) ^ getXOR(BITree, l - 1); } // Driver Code let A = [ 2, 1, 1, 3, 2, 3, 4, 5, 6, 7, 8, 9 ]; let n = A.length; let q = [ [ 1, 0, 9 ], [ 2, 3, 6 ], [ 2, 5, 5 ], [ 2, 8, 1 ], [ 1, 0, 9 ] ]; // Create the Binary Indexed Tree let BITree = constructBITree(A, n); // Solve each query in Q for (let i = 0; i < q.length; i++) { let id = q[i][0]; if (id == 1) { let L = q[i][1]; let R = q[i][2]; document.write("XOR of elements " + "in given range is " + rangeXor(BITree, L, R) + "<br>"); } else { let idx = q[i][1]; let val = q[i][2]; A[idx] ^= val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } } </script>
XOR of elements in given range is 0 XOR of elements in given range is 2
Complejidad temporal de getXor(): O(log N)
Complejidad temporal de updateBIT(): O(log N)
Complejidad temporal general: O(M * log N) donde M y N son el número de consultas y el tamaño de la array dada respectivamente.