XOR de todos los números primos en una array

Dada una array de enteros arr[] . La tarea es encontrar el XOR bit a bit de todos los números primos presentes en la array.
Ejemplos
 

Input: arr[] = {2, 5, 8, 4, 3}
Output: 4

Input: arr[] = {7, 12, 2, 6, 11}
Output: 14

Acercarse: 
 

  • Crea un tamiz para comprobar si un elemento es primo o no en O(1).
  • Recorre la array y comprueba si el número es primo.
  • Calcule el xor de todos los elementos primos de la array.

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find Xor of all
// Prime numbers in array
 
#include <bits/stdc++.h>
using namespace std;
 
bool prime[100005];
 
void SieveOfEratosthenes(int n)
{
 
    memset(prime, true, sizeof(prime));
 
    // false here indicates
    // that it is not prime
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to compute xor of all
// prime elements
int xorPrimes(int arr[], int n)
{
    SieveOfEratosthenes(100005);
 
    int xorVal = 0;
 
    for (int i = 0; i < n; i++) {
 
        // if the element is prime
        if (prime[arr[i]])
            xorVal = xorVal ^ arr[i];
    }
 
    return xorVal;
}
 
// Driver code
int main()
{
 
    int arr[] = { 4, 3, 2, 6, 100, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << xorPrimes(arr, n);
 
    return 0;
}

Java

// Java program to find Xor of all
// Prime numbers in array
import java.util.Arrays;
 
 
class GFG
{
    static boolean prime[] = new boolean[100005];
 
    static void SieveOfEratosthenes(int n)
    {
        Arrays.fill(prime, true);
 
        // false here indicates
        // that it is not prime
        prime[1] = false;
 
        for (int p = 2; p * p < n; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
                // Update all multiples of p,
                // set them to non-prime
                for (int i = p * 2; i < n; i += p)
                {
                    prime[i] = false;
                }
            }
        }
    }
 
    // Function to compute xor of all
    // prime elements
    static int xorPrimes(int arr[], int n)
    {
        SieveOfEratosthenes(100005);
        int xorVal = 0;
        for (int i = 0; i < n; i++)
        {
            // if the element is prime
            if (prime[arr[i]])
            {
                xorVal = xorVal ^ arr[i];
            }
        }
        return xorVal;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {4, 3, 2, 6, 100, 17};
        int n = arr.length;
        System.out.println(xorPrimes(arr, n));
    }
}
 
// This code is contributed by
// Rajput-Ji

Python3

# Python3 program to find Xor of
# all Prime numbers in array
 
prime = [True] * (100005)
 
def SieveOfEratosthenes(n):
  
    # False here indicates
    # that it is not prime
    prime[1] = False
    p = 2
     
    while p*p <= n:
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p]: 
 
            # Update all multiples of p,
            # set them to non-prime
            for i in range(p * 2, n+1, p):
                prime[i] = False
                 
        p += 1
          
# Function to compute xor
# of all prime elements
def xorPrimes(arr, n):
  
    SieveOfEratosthenes(100004)
 
    xorVal = 0
    for i in range(0, n): 
 
        # if the element is prime
        if prime[arr[i]]:
            xorVal = xorVal ^ arr[i]
      
    return xorVal
  
# Driver code
if __name__ == "__main__":
  
    arr = [4, 3, 2, 6, 100, 17] 
    n = len(arr)
 
    print(xorPrimes(arr, n))
 
# This code is contributed by Rituraj Jain

C#

// C# program to find Xor of all
// Prime numbers in array
using System;
 
class GFG
{
    static bool []prime = new bool[100005];
 
    static void SieveOfEratosthenes(int n)
    {
        for(int i = 0; i < 100005; i++)
            prime[i] = true;
 
        // false here indicates
        // that it is not prime
        prime[1] = false;
 
        for (int p = 2; p * p < n; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
                // Update all multiples of p,
                // set them to non-prime
                for (int i = p * 2; i < n; i += p)
                {
                    prime[i] = false;
                }
            }
        }
    }
 
    // Function to compute xor of all
    // prime elements
    static int xorPrimes(int []arr, int n)
    {
        SieveOfEratosthenes(100005);
        int xorVal = 0;
        for (int i = 0; i < n; i++)
        {
            // if the element is prime
            if (prime[arr[i]])
            {
                xorVal = xorVal ^ arr[i];
            }
        }
        return xorVal;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = {4, 3, 2, 6, 100, 17};
        int n = arr.Length;
        Console.WriteLine(xorPrimes(arr, n));
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript

<script>
 
// Javascript program to find Xor of all
// Prime numbers in array
 
var prime = Array(100005).fill(true);
 
function SieveOfEratosthenes( n)
{
 
    // false here indicates
    // that it is not prime
    prime[1] = false;
 
    for (var p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (var i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to compute xor of all
// prime elements
function xorPrimes( arr, n)
{
    SieveOfEratosthenes(100005);
 
    var xorVal = 0;
 
    for (var i = 0; i < n; i++) {
 
        // if the element is prime
        if (prime[arr[i]])
            xorVal = xorVal ^ arr[i];
    }
 
    return xorVal;
}
 
// Driver code
var arr = [ 4, 3, 2, 6, 100, 17 ];
var n = arr.length;
document.write( xorPrimes(arr, n));
 
</script>
Producción: 

16

 

Publicación traducida automáticamente

Artículo escrito por Shashank_Sharma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *