Programa Python3 para contar rotaciones divisible por 8

Dado un gran número positivo como string, cuente todas las rotaciones del número dado que son divisibles por 8.

Ejemplos: 

Input: 8
Output: 1

Input: 40
Output: 1
Rotation: 40 is divisible by 8
          04 is not divisible by 8

Input : 13502
Output : 0
No rotation is divisible by 8

Input : 43262488612
Output : 4

Enfoque: para números grandes, es difícil rotar y dividir cada número por 8. Por lo tanto, se usa la propiedad de ‘divisibilidad por 8’ que dice que un número es divisible por 8 si los últimos 3 dígitos del número son divisibles por 8. Aquí en realidad, no rotamos el número y verificamos la divisibilidad de los últimos 8 dígitos, sino que contamos una secuencia consecutiva de 3 dígitos (en forma circular) que son divisibles por 8.

Ilustración:  

Consider a number 928160
Its rotations are 928160, 092816, 609281, 
160928, 816092, 281609.
Now form consecutive sequence of 3-digits from 
the original number 928160 as mentioned in the 
approach. 
3-digit: (9, 2, 8), (2, 8, 1), (8, 1, 6), 
(1, 6, 0),(6, 0, 9), (0, 9, 2)
We can observe that the 3-digit number formed by 
the these sets, i.e., 928, 281, 816, 160, 609, 092, 
are present in the last 3 digits of some rotation.
Thus, checking divisibility of these 3-digit numbers
gives the required number of rotations. 

Python3

# Python3 program to count all
# rotations divisible by 8
 
# function to count of all
# rotations divisible by 8
def countRotationsDivBy8(n):
    l = len(n)
    count = 0
 
    # For single digit number
    if (l == 1):
        oneDigit = int(n[0])
        if (oneDigit % 8 == 0):
            return 1
        return 0
 
    # For two-digit numbers
    # (considering all pairs)
    if (l == 2):
 
        # first pair
        first = int(n[0]) * 10 + int(n[1])
 
        # second pair
        second = int(n[1]) * 10 + int(n[0])
 
        if (first % 8 == 0):
            count+=1
        if (second % 8 == 0):
            count+=1
        return count
 
    # considering all
    # three-digit sequences
    threeDigit=0
    for i in range(0,(l - 2)):
        threeDigit = (int(n[i]) * 100 +
                     int(n[i + 1]) * 10 +
                     int(n[i + 2]))
        if (threeDigit % 8 == 0):
            count+=1
 
    # Considering the number
    # formed by the last digit
    # and the first two digits
    threeDigit = (int(n[l - 1]) * 100 +
                 int(n[0]) * 10 +
                 int(n[1]))
 
    if (threeDigit % 8 == 0):
        count+=1
 
    # Considering the number
    # formed by the last two
    # digits and the first digit
    threeDigit = (int(n[l - 2]) * 100 +
                 int(n[l - 1]) * 10 +
                 int(n[0]))
    if (threeDigit % 8 == 0):
        count+=1
 
    # required count
    # of rotations
    return count
 
 
# Driver Code
if __name__=='__main__':
    n = "43262488612"
    print("Rotations:",countRotationsDivBy8(n))
 
# This code is contributed by mits.

Producción: 

Rotations: 4

Complejidad de tiempo: O(n), donde n es el número de dígitos en el número de entrada.
Espacio Auxiliar: O(1)

Consulte el artículo completo sobre rotaciones de conteo divisibles por 8 para obtener más detalles.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *