Número de dígito K más grande divisible por todos los números en una array dada

Dada una array arr[] de tamaño N y un número entero K. La tarea es encontrar el número de dígitos K más grande divisible por todos los números de arr[].

Ejemplos:

Entrada: arr[] = {2, 3, 5}, K = 3
Salida: 990
Explicación: 990 es el mayor número de 3 dígitos divisible por 2, 3 y 5.

Entrada: arr[] = {91, 93, 95}, K = 3
Salida: -1
Explicación: No hay un número de 3 dígitos divisible por todos los 91, 93 y 95.

 

Enfoque: La solución se basa en la idea similar a encontrar el número de dígitos K más grande divisible por X. Siga los pasos que se mencionan a continuación.

MCM(arr) * ((10 K -1)/MCM(arr))

A continuación se muestra la implementación del enfoque anterior.

C++

// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
   int __gcd(int a, int b)
   {
 
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // Base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a - b, b);
 
    return __gcd(a, b - a);
   }
 
  // Function to find LCM of the array
  int findLCM(int arr[], int n, int idx)
  {
 
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == n - 1)
    {
      return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, n, idx + 1);
 
    double gcd = __gcd(a, b);
 
    return (a * (int)floor(b / gcd));
  }
 
  // Function to find the number
  int findNum(int arr[], int n, int K)
  {
    int  lcm = findLCM(arr, n, 0);
    int ans = (int)floor((pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
 
    if (ans == 0)
      return -1;
 
    return ans;
  }
 
  // Driver code
  int main()
  {
    int arr[] = { 2, 3, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
 
    cout << findNum(arr, n, K);
  }
 
// This code is contributed by Samim Hossain Mondal.

Java

// Java code to implement above approach
class GFG
{
  static int __gcd(int a, int b)
  {
 
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // Base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a - b, b);
 
    return __gcd(a, b - a);
  }
 
  // Function to find LCM of the array
  static int findLCM(int []arr, int idx)
  {
 
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.length - 1)
    {
      return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, idx + 1);
 
    double gcd = __gcd(a, b);
 
    return (a * (int)Math.floor(b / gcd));
  }
 
  // Function to find the number
  static int findNum(int []arr, int K)
  {
    int  lcm = findLCM(arr, 0);
    int ans = (int)Math.floor((Math.pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
 
    if (ans == 0)
      return -1;
 
    return ans;
  }
 
  // Driver code
  public static void main(String []args)
  {
    int []arr = { 2, 3, 5 };
    int K = 3;
 
    System.out.println(findNum(arr, K));
  }
}
 
// This code is contributed by 29AjayKumar

Python3

# python code to implement above approach
import math
 
# Function to find LCM of the array
def findLCM(arr, idx):
 
    # lcm(a, b) = (a*b / gcd(a, b))
    if (idx == len(arr) - 1):
        return arr[idx]
 
    a = arr[idx]
    b = findLCM(arr, idx + 1)
    return (a * b // math.gcd(a, b))
 
# Function to find the number
def findNum(arr, K):
 
    lcm = findLCM(arr, 0)
    ans = (pow(10, K) - 1) // lcm
    ans = (ans)*lcm
    if (ans == 0):
        return -1
    return ans
 
# Driver code
if __name__ == "__main__":
 
    arr = [2, 3, 5]
    K = 3
    print(findNum(arr, K))
 
# This code is contributed by rakeshsahni

C#

// C# code to implement above approach
using System;
using System.Collections;
class GFG
{
static int __gcd(int a, int b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
 
    // Base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
         
    return __gcd(a, b - a);
}
 
// Function to find LCM of the array
static int findLCM(int []arr, int idx)
{
     
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.Length - 1)
    {
        return arr[idx];
    }
    int a = arr[idx];
    int b = findLCM(arr, idx + 1);
     
    double gcd = __gcd(a, b);
     
    return (a * (int)Math.Floor(b / gcd));
}
 
// Function to find the number
static int findNum(int []arr, int K)
{
    int  lcm = findLCM(arr, 0);
    int ans = (int)Math.Floor((Math.Pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
     
    if (ans == 0)
        return -1;
         
    return ans;
}
 
// Driver code
public static void Main()
{
int []arr = { 2, 3, 5 };
int K = 3;
 
Console.Write(findNum(arr, K));
}
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript

<script>
 
// JavaScript code to implement above approach
function __gcd(a, b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
 
    // Base case
    if (a == b)
        return a;
 
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
         
    return __gcd(a, b - a);
}
 
// Function to find LCM of the array
function findLCM(arr, idx)
{
     
    // lcm(a, b) = (a*b / gcd(a, b))
    if (idx == arr.length - 1)
    {
        return arr[idx];
    }
    let a = arr[idx];
    let b = findLCM(arr, idx + 1);
    return Math.floor((a * b / __gcd(a, b)));
}
 
// Function to find the number
function findNum(arr, K)
{
    let lcm = findLCM(arr, 0);
    let ans = Math.floor((Math.pow(10, K) - 1) / lcm);
    ans = (ans) * lcm;
     
    if (ans == 0)
        return -1;
         
    return ans;
}
 
// Driver code
let arr = [ 2, 3, 5 ];
let K = 3;
 
document.write(findNum(arr, K));
 
// This code is contributed by Potta Lokesh
 
</script>
Producción

990

Complejidad de Tiempo: O(N*logD) donde D es el elemento máximo del arreglo
Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por Code_r y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *