Recuento de subárboles con suma de dígitos de todos los Nodes igual a X

Dado un árbol binario que consta de N Nodes y un entero positivo X . La tarea es contar el número de subárboles con el dígito suma de Nodes igual a X

Ejemplos: 

Entrada: N = 7, X = 29

           10
          / \  
       2 3
     / \ / \
   9 3 4 7

Salida: 2
Explicación: Todo el árbol binario es un subárbol con una suma de dígitos igual a 29. 

Entrada: N = 7, X = 14

           10
          / \  
       2 3
     / \ / \
   9 3 4 7

Salida: 2

Enfoque: Este problema es una variación de subárboles de conteo en un árbol binario con una suma dada . Para resolver este problema, reemplace todos los Nodes con sus sumas de dígitos usando cualquier recorrido de árbol y luego cuente  los subárboles con suma X.

A continuación se muestra la implementación del enfoque anterior. 

C++

// C++ implementation for above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Structure of a node of binary tree
struct Node {
    int data;
    Node *left, *right;
};
 
// Function to get a new node
Node* getNode(int data)
{
    // Allocate space
    Node* newNode
        = (Node*)malloc(sizeof(Node));
 
    // Put in the data
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
}
 
// Function to find digit sum of number
int digitSum(int N)
{
    int sum = 0;
    while (N) {
        sum += N % 10;
        N /= 10;
    }
    return sum;
}
 
// Function to replace all the nodes
// with their digit sums using pre-order
void replaceNodes(Node* root)
{
    if (!root)
        return;
 
    // Assigning digit sum value
    root->data = digitSum(root->data);
 
    // Calling left sub-tree
    replaceNodes(root->left);
 
    // Calling right sub-tree
    replaceNodes(root->right);
}
 
// Function to count subtrees that
// Sum up to a given value x
int countSubtreesWithSumX(Node* root,
                          int& count, int x)
{
    // If tree is empty
    if (!root)
        return 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root->left, count, x);
 
    // Sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root->right, count, x);
 
    // Sum of nodes in the subtree rooted
    // with 'root->data'
    int sum = ls + rs + root->data;
 
    // If true
    if (sum == x)
        count++;
 
    // Return subtree's nodes sum
    return sum;
}
 
// Utility function to count subtrees that
// sum up to a given value x
int countSubtreesWithSumXUtil(Node* root, int x)
{
    // If tree is empty
    if (!root)
        return 0;
 
    int count = 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root->left, count, x);
 
    // sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root->right, count, x);
 
    // If tree's nodes sum == x
    if ((ls + rs + root->data) == x)
        count++;
 
    // Required count of subtrees
    return count;
}
 
// Driver program to test above
int main()
{
    int N = 7;
    /* Binary tree creation
           10         
          /   \
        2       3
      /  \     /  \  
     9    3    4   7
    */
    Node* root = getNode(10);
    root->left = getNode(2);
    root->right = getNode(3);
    root->left->left = getNode(9);
    root->left->right = getNode(3);
    root->right->left = getNode(4);
    root->right->right = getNode(7);
 
    // Replacing nodes with their
    // digit sum value
    replaceNodes(root);
 
    int X = 29;
 
    cout << countSubtreesWithSumXUtil(root, X);
 
    return 0;
}

Java

// Java implementation for above approach
class GFG{
 
static int count = 0;
   
// Structure of a node of binary tree
static class Node {
    int data;
    Node left, right;
};
 
// Function to get a new node
static Node getNode(int data)
{
    // Allocate space
    Node newNode
        = new Node();
 
    // Put in the data
    newNode.data = data;
    newNode.left = newNode.right = null;
    return newNode;
}
 
// Function to find digit sum of number
static int digitSum(int N)
{
    int sum = 0;
    while (N>0) {
        sum += N % 10;
        N /= 10;
    }
    return sum;
}
 
// Function to replace all the nodes
// with their digit sums using pre-order
static void replaceNodes(Node root)
{
    if (root==null)
        return;
 
    // Assigning digit sum value
    root.data = digitSum(root.data);
 
    // Calling left sub-tree
    replaceNodes(root.left);
 
    // Calling right sub-tree
    replaceNodes(root.right);
}
 
// Function to count subtrees that
// Sum up to a given value x
static int countSubtreesWithSumX(Node root, int x)
{
    // If tree is empty
    if (root==null)
        return 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root.left,  x);
 
    // Sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root.right,  x);
 
    // Sum of nodes in the subtree rooted
    // with 'root.data'
    int sum = ls + rs + root.data;
 
    // If true
    if (sum == x)
        count++;
 
    // Return subtree's nodes sum
    return sum;
}
 
// Utility function to count subtrees that
// sum up to a given value x
static int countSubtreesWithSumXUtil(Node root, int x)
{
    // If tree is empty
    if (root==null)
        return 0;
 
    count = 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root.left,  x);
 
    // sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root.right,  x);
 
    // If tree's nodes sum == x
    if ((ls + rs + root.data) == x)
        count++;
 
    // Required count of subtrees
    return count;
}
 
// Driver program to test above
public static void main(String[] args)
{
    int N = 7;
    /* Binary tree creation
           10         
          /   \
        2       3
      /  \     /  \  
     9    3    4   7
    */
    Node root = getNode(10);
    root.left = getNode(2);
    root.right = getNode(3);
    root.left.left = getNode(9);
    root.left.right = getNode(3);
    root.right.left = getNode(4);
    root.right.right = getNode(7);
 
    // Replacing nodes with their
    // digit sum value
    replaceNodes(root);
 
    int X = 29;
 
    System.out.print(countSubtreesWithSumXUtil(root, X));
 
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python implementation for above approach
count = 0;
   
# Structure of a Node of binary tree
class Node:
    def __init__(self):
        self.data = 0;
        self.left = None;
        self.right = None;
 
# Function to get a new Node
def getNode(data):
   
    # Allocate space
    newNode = Node();
 
    # Put in the data
    newNode.data = data;
    newNode.left = newNode.right = None;
    return newNode;
 
# Function to find digit sum of number
def digitSum(N):
    sum = 0;
    while (N > 0):
        sum += N % 10;
        N //= 10;
     
    return sum;
 
# Function to replace all the Nodes
# with their digit sums using pre-order
def replaceNodes(root):
    if (root == None):
        return;
 
    # Assigning digit sum value
    root.data = digitSum(root.data);
 
    # Calling left sub-tree
    replaceNodes(root.left);
 
    # Calling right sub-tree
    replaceNodes(root.right);
 
 
# Function to count subtrees that
# Sum up to a given value x
def countSubtreesWithSumX(root, x):
   
    # If tree is empty
    if (root == None):
        return 0;
 
    # Sum of Nodes in the left subtree
    ls = countSubtreesWithSumX(root.left,  x);
 
    # Sum of Nodes in the right subtree
    rs = countSubtreesWithSumX(root.right,  x);
 
    # Sum of Nodes in the subtree rooted
    # with 'root.data'
    sum = ls + rs + root.data;
 
    # If True
    if (sum == x):
        count += 1;
 
    # Return subtree's Nodes sum
    return sum;
 
 
# Utility function to count subtrees that
# sum up to a given value x
def countSubtreesWithSumXUtil(root, x):
   
    # If tree is empty
    if (root == None):
        return 0;
 
    count = 0;
 
    # Sum of Nodes in the left subtree
    ls = countSubtreesWithSumX(root.left,  x);
 
    # sum of Nodes in the right subtree
    rs = countSubtreesWithSumX(root.right,  x);
 
    # If tree's Nodes sum == x
    if ((ls + rs + root.data) == x):
        count+=1;
 
    # Required count of subtrees
    return count;
 
# Driver program to test above
if __name__ == '__main__':
    N = 7;
    '''Binary tree creation
           10         
          /   \
        2       3
      /  \     /  \  
     9    3    4   7'''
    root = getNode(10);
    root.left = getNode(2);
    root.right = getNode(3);
    root.left.left = getNode(9);
    root.left.right = getNode(3);
    root.right.left = getNode(4);
    root.right.right = getNode(7);
 
    # Replacing Nodes with their
    # digit sum value
    replaceNodes(root);
 
    X = 29;
 
    print(countSubtreesWithSumXUtil(root, X));
 
 
# This code is contributed by Rajput-Ji

C#

// C# implementation for above approach
using System;
public class GFG{
 
static int count = 0;
   
// Structure of a node of binary tree
class Node {
    public int data;
    public Node left, right;
};
 
// Function to get a new node
static Node getNode(int data)
{
    // Allocate space
    Node newNode
        = new Node();
 
    // Put in the data
    newNode.data = data;
    newNode.left = newNode.right = null;
    return newNode;
}
 
// Function to find digit sum of number
static int digitSum(int N)
{
    int sum = 0;
    while (N>0) {
        sum += N % 10;
        N /= 10;
    }
    return sum;
}
 
// Function to replace all the nodes
// with their digit sums using pre-order
static void replaceNodes(Node root)
{
    if (root==null)
        return;
 
    // Assigning digit sum value
    root.data = digitSum(root.data);
 
    // Calling left sub-tree
    replaceNodes(root.left);
 
    // Calling right sub-tree
    replaceNodes(root.right);
}
 
// Function to count subtrees that
// Sum up to a given value x
static int countSubtreesWithSumX(Node root, int x)
{
    // If tree is empty
    if (root==null)
        return 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root.left,  x);
 
    // Sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root.right,  x);
 
    // Sum of nodes in the subtree rooted
    // with 'root.data'
    int sum = ls + rs + root.data;
 
    // If true
    if (sum == x)
        count++;
 
    // Return subtree's nodes sum
    return sum;
}
 
// Utility function to count subtrees that
// sum up to a given value x
static int countSubtreesWithSumXUtil(Node root, int x)
{
    // If tree is empty
    if (root==null)
        return 0;
 
    count = 0;
 
    // Sum of nodes in the left subtree
    int ls = countSubtreesWithSumX(
        root.left,  x);
 
    // sum of nodes in the right subtree
    int rs = countSubtreesWithSumX(
        root.right,  x);
 
    // If tree's nodes sum == x
    if ((ls + rs + root.data) == x)
        count++;
 
    // Required count of subtrees
    return count;
}
 
// Driver program to test above
public static void Main(String[] args)
{
    int N = 7;
    /* Binary tree creation
           10         
          /   \
        2       3
      /  \     /  \  
     9    3    4   7
    */
    Node root = getNode(10);
    root.left = getNode(2);
    root.right = getNode(3);
    root.left.left = getNode(9);
    root.left.right = getNode(3);
    root.right.left = getNode(4);
    root.right.right = getNode(7);
 
    // Replacing nodes with their
    // digit sum value
    replaceNodes(root);
 
    int X = 29;
 
    Console.Write(countSubtreesWithSumXUtil(root, X));
}
}
 
// This code is contributed by shikhasingrajput

Javascript

<script>
 
    // JavaScript Program to implement
    // the above approach
 
    // Structure of a node of binary tree
    class Node {
        constructor(data) {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to get a new node
    function getNode(data) {
        // Allocate space
        let newNode
            = new Node(data);
        return newNode;
    }
 
    // Function to find digit sum of number
    function digitSum(N) {
        let sum = 0;
        while (N) {
            sum += N % 10;
            N = Math.floor(N / 10);
        }
        return sum;
    }
 
    // Function to replace all the nodes
    // with their digit sums using pre-order
    function replaceNodes(root) {
        if (!root)
            return;
 
        // Assigning digit sum value
        root.data = digitSum(root.data);
 
        // Calling left sub-tree
        replaceNodes(root.left);
 
        // Calling right sub-tree
        replaceNodes(root.right);
    }
 
    // Function to count subtrees that
    // Sum up to a given value x
    function countSubtreesWithSumX(root,
        count, x) {
        // If tree is empty
        if (!root)
            return 0;
 
        // Sum of nodes in the left subtree
        let ls = countSubtreesWithSumX(
            root.left, count, x);
 
        // Sum of nodes in the right subtree
        let rs = countSubtreesWithSumX(
            root.right, count, x);
 
        // Sum of nodes in the subtree rooted
        // with 'root.data'
        let sum = ls + rs + root.data;
 
        // If true
        if (sum == x)
            count++;
 
        // Return subtree's nodes sum
        return sum;
    }
 
    // Utility function to count subtrees that
    // sum up to a given value x
    function countSubtreesWithSumXUtil(root, x) {
        // If tree is empty
        if (!root)
            return 0;
 
        let count = 0;
 
        // Sum of nodes in the left subtree
        let ls = countSubtreesWithSumX(
            root.left, count, x);
 
        // sum of nodes in the right subtree
        let rs = countSubtreesWithSumX(
            root.right, count, x);
 
        // If tree's nodes sum == x
        if ((ls + rs + root.data) == x)
            count++;
 
        // Required count of subtrees
        return count;
    }
 
    // Driver program to test above
 
    let N = 7;
    /* Binary tree creation
           10         
          /   \
        2       3
      /  \     /  \  
     9    3    4   7
    */
    let root = getNode(10);
    root.left = getNode(2);
    root.right = getNode(3);
    root.left.left = getNode(9);
    root.left.right = getNode(3);
    root.right.left = getNode(4);
    root.right.right = getNode(7);
 
    // Replacing nodes with their
    // digit sum value
    replaceNodes(root);
 
    let X = 29;
 
    document.write(countSubtreesWithSumXUtil(root, X));
 
 
 
// This code is contributed by Potta Lokesh
</script>
Producción

1

Complejidad temporal: O(N). 
Espacio Auxiliar: O(1).

Publicación traducida automáticamente

Artículo escrito por nobita04 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *