Consideremos el siguiente problema para comprender los árboles de segmentos.
Tenemos una array arr[0 . . . n-1]. Deberíamos ser capaces de
- Encuentre la suma de elementos del índice l a r donde 0 <= l <= r <= n-1
- Cambia el valor de un elemento específico de la array a un nuevo valor x. Necesitamos hacer arr[i] = x donde 0 <= i <= n-1.
Una solución simple es ejecutar un ciclo de l a r y calcular la suma de los elementos en el rango dado. Para actualizar un valor, simplemente haga arr[i] = x. La primera operación toma el tiempo O(n) y la segunda operación toma el tiempo O(1).
C++
// C++ program to show segment tree operations like construction, query // and update #include <bits/stdc++.h> using namespace std; // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } /* A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getSumUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return getSumUtil(st, ss, mid, qs, qe, 2*si+1) + getSumUtil(st, mid+1, se, qs, qe, 2*si+2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return; // If the input index is in range of this node, then update // the value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2*si + 1); updateValueUtil(st, mid+1, se, i, diff, 2*si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { cout<<"Invalid Input"; return; } // Get the difference between new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n-1, i, diff, 0); } // Return sum of elements in range from index qs (query start) // to qe (query end). It mainly uses getSumUtil() int getSum(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { cout<<"Invalid Input"; return -1; } return getSumUtil(st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) + constructSTUtil(arr, mid+1, se, st, si*2+2); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for the segment tree //Height of segment tree int x = (int)(ceil(log2(n))); //Maximum size of segment tree int max_size = 2*(int)pow(2, x) - 1; // Allocate memory int *st = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n-1, st, 0); // Return the constructed segment tree return st; } // Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]); // Build segment tree from given array int *st = constructST(arr, n); // Print sum of values in array from index 1 to 3 cout<<"Sum of values in given range = "<<getSum(st, n, 1, 3)<<endl; // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, st, n, 1, 10); // Find sum after the value is updated cout<<"Updated sum of values in given range = " <<getSum(st, n, 1, 3)<<endl; return 0; } //This code is contributed by rathbhupendra
C
// C program to show segment tree operations like construction, query // and update #include <stdio.h> #include <math.h> // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e -s)/2; } /* A recursive function to get the sum of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getSumUtil(int *st, int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return getSumUtil(st, ss, mid, qs, qe, 2*si+1) + getSumUtil(st, mid+1, se, qs, qe, 2*si+2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int *st, int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return; // If the input index is in range of this node, then update // the value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2*si + 1); updateValueUtil(st, mid+1, se, i, diff, 2*si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int *st, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n-1) { printf("Invalid Input"); return; } // Get the difference between new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(st, 0, n-1, i, diff, 0); } // Return sum of elements in range from index qs (query start) // to qe (query end). It mainly uses getSumUtil() int getSum(int *st, int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n-1 || qs > qe) { printf("Invalid Input"); return -1; } return getSumUtil(st, 0, n-1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int *st, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) + constructSTUtil(arr, mid+1, se, st, si*2+2); return st[si]; } /* Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ int *constructST(int arr[], int n) { // Allocate memory for the segment tree //Height of segment tree int x = (int)(ceil(log2(n))); //Maximum size of segment tree int max_size = 2*(int)pow(2, x) - 1; // Allocate memory int *st = new int[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n-1, st, 0); // Return the constructed segment tree return st; } // Driver program to test above functions int main() { int arr[] = {1, 3, 5, 7, 9, 11}; int n = sizeof(arr)/sizeof(arr[0]); // Build segment tree from given array int *st = constructST(arr, n); // Print sum of values in array from index 1 to 3 printf("Sum of values in given range = %dn", getSum(st, n, 1, 3)); // Update: set arr[1] = 10 and update corresponding // segment tree nodes updateValue(arr, st, n, 1, 10); // Find sum after the value is updated printf("Updated sum of values in given range = %dn", getSum(st, n, 1, 3)); return 0; }
Java
// Java Program to show segment tree operations like construction, // query and update class SegmentTree { int st[]; // The array that stores segment tree nodes /* Constructor to construct segment tree from given array. This constructor allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ SegmentTree(int arr[], int n) { // Allocate memory for segment tree //Height of segment tree int x = (int) (Math.ceil(Math.log(n) / Math.log(2))); //Maximum size of segment tree int max_size = 2 * (int) Math.pow(2, x) - 1; st = new int[max_size]; // Memory allocation constructSTUtil(arr, 0, n - 1, 0); } // A utility function to get the middle index from corner indexes. int getMid(int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the sum of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getSumUtil(int ss, int se, int qs, int qe, int si) { // If segment of this node is a part of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment overlaps with the given range int mid = getMid(ss, se); return getSumUtil(ss, mid, qs, qe, 2 * si + 1) + getSumUtil(mid + 1, se, qs, qe, 2 * si + 2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int ss, int se, int i, int diff, int si) { // Base Case: If the input index lies outside the range of // this segment if (i < ss || i > se) return; // If the input index is in range of this node, then update the // value of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(ss, mid, i, diff, 2 * si + 1); updateValueUtil(mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value in input array and segment tree. // It uses updateValueUtil() to update the value in segment tree void updateValue(int arr[], int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { System.out.println("Invalid Input"); return; } // Get the difference between new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(0, n - 1, i, diff, 0); } // Return sum of elements in range from index qs (query start) to // qe (query end). It mainly uses getSumUtil() int getSum(int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { System.out.println("Invalid Input"); return -1; } return getSumUtil(0, n - 1, qs, qe, 0); } // A recursive function that constructs Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int arr[], int ss, int se, int si) { // If there is one element in array, store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then recur for left and // right subtrees and store the sum of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, si * 2 + 2); return st[si]; } // Driver program to test above functions public static void main(String args[]) { int arr[] = {1, 3, 5, 7, 9, 11}; int n = arr.length; SegmentTree tree = new SegmentTree(arr, n); // Build segment tree from given array // Print sum of values in array from index 1 to 3 System.out.println("Sum of values in given range = " + tree.getSum(n, 1, 3)); // Update: set arr[1] = 10 and update corresponding segment // tree nodes tree.updateValue(arr, n, 1, 10); // Find sum after the value is updated System.out.println("Updated sum of values in given range = " + tree.getSum(n, 1, 3)); } } //This code is contributed by Ankur Narain Verma
Python3
# Python3 program to show segment tree operations like # construction, query and update from math import ceil, log2; # A utility function to get the # middle index from corner indexes. def getMid(s, e) : return s + (e -s) // 2; """ A recursive function to get the sum of values in the given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range """ def getSumUtil(st, ss, se, qs, qe, si) : # If segment of this node is a part of given range, # then return the sum of the segment if (qs <= ss and qe >= se) : return st[si]; # If segment of this node is # outside the given range if (se < qs or ss > qe) : return 0; # If a part of this segment overlaps # with the given range mid = getMid(ss, se); return getSumUtil(st, ss, mid, qs, qe, 2 * si + 1) + getSumUtil(st, mid + 1, se, qs, qe, 2 * si + 2); """ A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in the input array. diff --> Value to be added to all nodes which have i in range """ def updateValueUtil(st, ss, se, i, diff, si) : # Base Case: If the input index lies # outside the range of this segment if (i < ss or i > se) : return; # If the input index is in range of this node, # then update the value of the node and its children st[si] = st[si] + diff; if (se != ss) : mid = getMid(ss, se); updateValueUtil(st, ss, mid, i, diff, 2 * si + 1); updateValueUtil(st, mid + 1, se, i, diff, 2 * si + 2); # The function to update a value in input array # and segment tree. It uses updateValueUtil() # to update the value in segment tree def updateValue(arr, st, n, i, new_val) : # Check for erroneous input index if (i < 0 or i > n - 1) : print("Invalid Input", end = ""); return; # Get the difference between # new value and old value diff = new_val - arr[i]; # Update the value in array arr[i] = new_val; # Update the values of nodes in segment tree updateValueUtil(st, 0, n - 1, i, diff, 0); # Return sum of elements in range from # index qs (query start) to qe (query end). # It mainly uses getSumUtil() def getSum(st, n, qs, qe) : # Check for erroneous input values if (qs < 0 or qe > n - 1 or qs > qe) : print("Invalid Input", end = ""); return -1; return getSumUtil(st, 0, n - 1, qs, qe, 0); # A recursive function that constructs # Segment Tree for array[ss..se]. # si is index of current node in segment tree st def constructSTUtil(arr, ss, se, st, si) : # If there is one element in array, # store it in current node of # segment tree and return if (ss == se) : st[si] = arr[ss]; return arr[ss]; # If there are more than one elements, # then recur for left and right subtrees # and store the sum of values in this node mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, st, si * 2 + 2); return st[si]; """ Function to construct segment tree from given array. This function allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory """ def constructST(arr, n) : # Allocate memory for the segment tree # Height of segment tree x = (int)(ceil(log2(n))); # Maximum size of segment tree max_size = 2 * (int)(2**x) - 1; # Allocate memory st = [0] * max_size; # Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); # Return the constructed segment tree return st; # Driver Code if __name__ == "__main__" : arr = [1, 3, 5, 7, 9, 11]; n = len(arr); # Build segment tree from given array st = constructST(arr, n); # Print sum of values in array from index 1 to 3 print("Sum of values in given range = ", getSum(st, n, 1, 3)); # Update: set arr[1] = 10 and update # corresponding segment tree nodes updateValue(arr, st, n, 1, 10); # Find sum after the value is updated print("Updated sum of values in given range = ", getSum(st, n, 1, 3), end = ""); # This code is contributed by AnkitRai01
C#
// C# Program to show segment tree // operations like construction, // query and update using System; class SegmentTree { int []st; // The array that stores segment tree nodes /* Constructor to construct segment tree from given array. This constructor allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ SegmentTree(int []arr, int n) { // Allocate memory for segment tree //Height of segment tree int x = (int) (Math.Ceiling(Math.Log(n) / Math.Log(2))); //Maximum size of segment tree int max_size = 2 * (int) Math.Pow(2, x) - 1; st = new int[max_size]; // Memory allocation constructSTUtil(arr, 0, n - 1, 0); } // A utility function to get the // middle index from corner indexes. int getMid(int s, int e) { return s + (e - s) / 2; } /* A recursive function to get the sum of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ int getSumUtil(int ss, int se, int qs, int qe, int si) { // If segment of this node is a part // of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return st[si]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range int mid = getMid(ss, se); return getSumUtil(ss, mid, qs, qe, 2 * si + 1) + getSumUtil(mid + 1, se, qs, qe, 2 * si + 2); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ void updateValueUtil(int ss, int se, int i, int diff, int si) { // Base Case: If the input index // lies outside the range of this segment if (i < ss || i > se) return; // If the input index is in range of // this node, then update the value // of the node and its children st[si] = st[si] + diff; if (se != ss) { int mid = getMid(ss, se); updateValueUtil(ss, mid, i, diff, 2 * si + 1); updateValueUtil(mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value // in input array and segment tree. // It uses updateValueUtil() to // update the value in segment tree void updateValue(int []arr, int n, int i, int new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { Console.WriteLine("Invalid Input"); return; } // Get the difference between // new value and old value int diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree updateValueUtil(0, n - 1, i, diff, 0); } // Return sum of elements in range // from index qs (query start) to // qe (query end). It mainly uses getSumUtil() int getSum(int n, int qs, int qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { Console.WriteLine("Invalid Input"); return -1; } return getSumUtil(0, n - 1, qs, qe, 0); } // A recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node in segment tree st int constructSTUtil(int []arr, int ss, int se, int si) { // If there is one element in array, // store it in current node of // segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, // then recur for left and right subtrees // and store the sum of values in this node int mid = getMid(ss, se); st[si] = constructSTUtil(arr, ss, mid, si * 2 + 1) + constructSTUtil(arr, mid + 1, se, si * 2 + 2); return st[si]; } // Driver code public static void Main() { int []arr = {1, 3, 5, 7, 9, 11}; int n = arr.Length; SegmentTree tree = new SegmentTree(arr, n); // Build segment tree from given array // Print sum of values in array from index 1 to 3 Console.WriteLine("Sum of values in given range = " + tree.getSum(n, 1, 3)); // Update: set arr[1] = 10 and update // corresponding segment tree nodes tree.updateValue(arr, n, 1, 10); // Find sum after the value is updated Console.WriteLine("Updated sum of values in given range = " + tree.getSum(n, 1, 3)); } } /* This code contributed by PrinciRaj1992 */
Javascript
<script> // JavaScript Program to show segment tree // operations like construction, // query and update class SegmentTree { /* Constructor to construct segment tree from given array. This constructor allocates memory for segment tree and calls constructSTUtil() to fill the allocated memory */ constructor(arr, n) { // Allocate memory for segment tree // Height of segment tree var x = parseInt(Math.ceil(Math.log(n) / Math.log(2))); //Maximum size of segment tree var max_size = 2 * parseInt(Math.pow(2, x) - 1); this.st = new Array(max_size).fill(0); // Memory allocation this.constructSTUtil(arr, 0, n - 1, 0); } // A utility function to get the // middle index from corner indexes. getMid(s, e) { return parseInt(s + (e - s) / 2); } /* A recursive function to get the sum of values in given range of the array. The following are parameters for this function. st --> Pointer to segment tree si --> Index of current node in the segment tree. Initially 0 is passed as root is always at index 0 ss & se --> Starting and ending indexes of the segment represented by current node, i.e., st[si] qs & qe --> Starting and ending indexes of query range */ getSumUtil(ss, se, qs, qe, si) { // If segment of this node is a part // of given range, then return // the sum of the segment if (qs <= ss && qe >= se) return this.st[si]; // If segment of this node is // outside the given range if (se < qs || ss > qe) return 0; // If a part of this segment // overlaps with the given range var mid = this.getMid(ss, se); return ( this.getSumUtil(ss, mid, qs, qe, 2 * si + 1) + this.getSumUtil(mid + 1, se, qs, qe, 2 * si + 2) ); } /* A recursive function to update the nodes which have the given index in their range. The following are parameters st, si, ss and se are same as getSumUtil() i --> index of the element to be updated. This index is in input array. diff --> Value to be added to all nodes which have i in range */ updateValueUtil(ss, se, i, diff, si) { // Base Case: If the input index // lies outside the range of this segment if (i < ss || i > se) return; // If the input index is in range of // this node, then update the value // of the node and its children this.st[si] = this.st[si] + diff; if (se != ss) { var mid = this.getMid(ss, se); this.updateValueUtil(ss, mid, i, diff, 2 * si + 1); this.updateValueUtil(mid + 1, se, i, diff, 2 * si + 2); } } // The function to update a value // in input array and segment tree. // It uses updateValueUtil() to // update the value in segment tree updateValue(arr, n, i, new_val) { // Check for erroneous input index if (i < 0 || i > n - 1) { document.write("Invalid Input"); return; } // Get the difference between // new value and old value var diff = new_val - arr[i]; // Update the value in array arr[i] = new_val; // Update the values of nodes in segment tree this.updateValueUtil(0, n - 1, i, diff, 0); } // Return sum of elements in range // from index qs (query start) to // qe (query end). It mainly uses getSumUtil() getSum(n, qs, qe) { // Check for erroneous input values if (qs < 0 || qe > n - 1 || qs > qe) { document.write("Invalid Input"); return -1; } return this.getSumUtil(0, n - 1, qs, qe, 0); } // A recursive function that constructs // Segment Tree for array[ss..se]. // si is index of current node in segment tree st constructSTUtil(arr, ss, se, si) { // If there is one element in array, // store it in current node of // segment tree and return if (ss == se) { this.st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, // then recur for left and right subtrees // and store the sum of values in this node var mid = this.getMid(ss, se); this.st[si] = this.constructSTUtil(arr, ss, mid, si * 2 + 1) + this.constructSTUtil(arr, mid + 1, se, si * 2 + 2); return this.st[si]; } } // Driver code var arr = [1, 3, 5, 7, 9, 11]; var n = arr.length; var tree = new SegmentTree(arr, n); // Build segment tree from given array // Print sum of values in array from index 1 to 3 document.write( "Sum of values in given range = " + tree.getSum(n, 1, 3) + "<br>" ); // Update: set arr[1] = 10 and update // corresponding segment tree nodes tree.updateValue(arr, n, 1, 10); // Find sum after the value is updated document.write( "Updated sum of values in given range = " + tree.getSum(n, 1, 3) + "<br>" ); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA