Recuento mínimo y máximo de elementos a la distancia D de arr[i] en cualquier dirección

Dada una array ordenada arr[] y un entero positivo D , la tarea es encontrar el número mínimo y máximo de elementos de array que se encuentran en la distancia de D desde un elemento de array arr[i] en cualquier dirección, es decir, en el rango [arr[i] – D, arr[i]] o [arr[i], arr[i] + D] .

Ejemplos:

Entrada arr[] = {2, 4, 7, 11, 13, 14}, D = 4
Salida: 1 3
Explicación:
El número mínimo de elementos de la array que se incluye es 1 de arr[0](= 2) como allí existe solo 1 elemento que se encuentra sobre el rango [-2, 2].
El número mínimo de elementos de la array que se incluye es 3 de arr[3](= 11) ya que solo existen 3 elementos que se encuentran en el rango [11, 15].
Por lo tanto, imprime 1, 3.

Entrada: arr[] = {1, 3, 5, 9, 14}, D = 5
Salida: 1 3

 

Enfoque: El problema dado se puede resolver usando la técnica codiciosa usando la búsqueda binaria a la izquierda y a la derecha de cada punto para verificar cuántos puntos se pueden incluir en el rango de distancia D . Siga los pasos a continuación para resolver el problema:

  • Inicialice dos variables, digamos min y max para almacenar elementos mínimos y máximos incluidos en un rango de distancia D .
  • Itere la array arr[] y para cada elemento realice lo siguiente:
    1. Inicialice una variable dist para calcular el número de puntos incluidos en un rango de distancia D .
    2. Realice la búsqueda binaria a la izquierda de arr[i] y encuentre elementos de array de números en el rango [arr[i] – D, arr[i]] siguiendo los siguientes pasos:
      • Inicializar izquierda = 0, derecha = i – 1 y en cada iteración:
        • Encuentra el valor de mid = (izquierda + derecha) / 2 .
        • Si arr[mid] < arr[i] – D, entonces actualice el valor de left to mid + 1 . De lo contrario, actualice el valor de dist a mid y actualice el valor de right a mid – 1 .
    3. Actualice el valor de min y max según el valor de dist .
    4. Realice la búsqueda binaria a la izquierda de arr[i] y encuentre el número de elementos de array en el rango [arr[i], arr[i] + D] siguiendo los siguientes pasos:
      • Inicialice izquierda = i + 1, derecha = N – i y en cada iteración:
        • Encuentra el valor de mid = (izquierda + derecha) / 2 .
        • Si arr[mid] > arr[i] + D , entonces actualice el valor de right to mid – 1 . De lo contrario, actualice el valor de dist a mid y actualice el valor de left a mid + 1 .
    5. Actualice el valor de min y max según el valor de dist .
  • Después de completar los pasos anteriores, imprima el valor de min y max como el mínimo resultante y el número máximo de puntos cubiertos.

A continuación se muestra la implementación del enfoque anterior:

C++

// c++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform the Binary
// Search to the left of arr[i]
// over the given range
int leftSearch(int arr[], int val, int i)
{
   
    // Base Case
    if (i == 0)
        return 1;
 
    int left = 0, right = i - 1;
    int ind = -1;
 
    // Binary Search for index to left
    while (left <= right) {
 
        int mid = (left + right) / 2;
        if (arr[mid] < val) {
            left = mid + 1;
        }
        else {
            right = mid - 1;
 
            // update index
            ind = mid;
        }
    }
 
    // Return the number of elements
    // by subtracting indices
    return ind != -1 ? i - ind + 1 : 1;
}
 
// Function to perform the Binary
// Search to the right of arr[i]
// over the given range
int rightSearch(int arr[], int val, int i, int N)
{
   
    // Base Case
    if (i == (N - 1))
        return 1;
 
    int left = i + 1;
    int right = N - 1;
    int ind = -1;
 
    // Binary Search for index to right
    while (left <= right) {
 
        int mid = (left + right) / 2;
        if (arr[mid] > val) {
            right = mid - 1;
        }
        else {
            left = mid + 1;
 
            // Update the index
            ind = mid;
        }
    }
 
    // Return the number of elements
    // by subtracting indices
    return ind != -1 ? ind - i + 1 : 1;
}
vector<int> minMaxRange(int arr[], int D, int N)
{
 
    // Stores the minimum and maximum
    // number of points that lies
    // over the distance of D
    int mx = 1, mn = N;
 
    // Iterate the array
    for (int i = 0; i < N; i++) {
 
        // Count of elements included
        // to left of point at index i
        int dist = leftSearch(arr, arr[i] - D, i);
 
        // Update the minimum number
        // of points
        mn = min(mn, dist);
 
        // Update the maximum number
        // of points
        mx = max(mx, dist);
 
        // Count of elements included
        // to right of point at index i
        dist = rightSearch(arr, arr[i] + D, i, N);
 
        // Update the minimum number
        // of points
        mn = min(mn, dist);
 
        // Update the maximum number
        // of points
        mx = max(mx, dist);
    }
 
    // Return the array
    vector<int> v;
    v.push_back(mn);
    v.push_back(mx);
    return v;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, 5, 9, 14 };
    int N = 5;
    int D = 4;
    vector<int> minMax = minMaxRange(arr, D, N);
    cout << minMax[0] << " " << minMax[1] << endl;
    return 0;
}
 
// This code is contributed by dwivediyash

Java

// Java program for the above approach
 
import java.io.*;
import java.lang.Math;
import java.util.*;
 
class GFG {
 
    // Function to find the minimum and
    // maximum number of points included
    // in a range of distance D
    public static int[] minMaxRange(
        int[] arr, int D, int N)
    {
 
        // Stores the minimum and maximum
        // number of points that lies
        // over the distance of D
        int max = 1, min = N;
 
        // Iterate the array
        for (int i = 0; i < N; i++) {
 
            // Count of elements included
            // to left of point at index i
            int dist = leftSearch(
                arr, arr[i] - D, i);
 
            // Update the minimum number
            // of points
            min = Math.min(min, dist);
 
            // Update the maximum number
            // of points
            max = Math.max(max, dist);
 
            // Count of elements included
            // to right of point at index i
            dist = rightSearch(
                arr, arr[i] + D, i);
 
            // Update the minimum number
            // of points
            min = Math.min(min, dist);
 
            // Update the maximum number
            // of points
            max = Math.max(max, dist);
        }
 
        // Return the array
        return new int[] { min, max };
    }
 
    // Function to perform the Binary
    // Search to the left of arr[i]
    // over the given range
    public static int leftSearch(
        int[] arr, int val, int i)
    {
        // Base Case
        if (i == 0)
            return 1;
 
        int left = 0, right = i - 1;
        int ind = -1;
 
        // Binary Search for index to left
        while (left <= right) {
 
            int mid = (left + right) / 2;
            if (arr[mid] < val) {
                left = mid + 1;
            }
            else {
                right = mid - 1;
 
                // update index
                ind = mid;
            }
        }
 
        // Return the number of elements
        // by subtracting indices
        return ind != -1 ? i - ind + 1 : 1;
    }
 
    // Function to perform the Binary
    // Search to the right of arr[i]
    // over the given range
    public static int rightSearch(
        int[] arr, int val, int i)
    {
        // Base Case
        if (i == arr.length - 1)
            return 1;
 
        int left = i + 1;
        int right = arr.length - 1;
        int ind = -1;
 
        // Binary Search for index to right
        while (left <= right) {
 
            int mid = (left + right) / 2;
            if (arr[mid] > val) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
 
                // Update the index
                ind = mid;
            }
        }
 
        // Return the number of elements
        // by subtracting indices
        return ind != -1 ? ind - i + 1 : 1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 3, 5, 9, 14 };
        int N = arr.length;
        int D = 4;
        int[] minMax = minMaxRange(arr, D, N);
 
        // Function Call
        System.out.print(
            minMax[0] + " " + minMax[1]);
    }
}

Python3

# Python Program to implement
# the above approach
 
# Function to find the minimum and
# maximum number of points included
# in a range of distance D
def minMaxRange(arr, D, N):
 
    # Stores the minimum and maximum
    # number of points that lies
    # over the distance of D
    Max = 1
    Min = N
 
    # Iterate the array
    for i in range(N):
 
        # Count of elements included
        # to left of point at index i
        dist = leftSearch(arr, arr[i] - D, i)
 
        # Update the minimum number
        # of points
        Min = min(Min, dist)
 
        # Update the maximum number
        # of points
        Max = max(Max, dist)
 
        # Count of elements included
        # to right of point at index i
        dist = rightSearch(arr, arr[i] + D, i)
 
        # Update the minimum number
        # of points
        Min = min(Min, dist)
 
        # Update the maximum number
        # of points
        Max = max(Max, dist)
 
    # Return the array
    return [Min, Max]
 
 
# Function to perform the Binary
# Search to the left of arr[i]
# over the given range
def leftSearch(arr, val, i):
    # Base Case
    if (i == 0):
        return 1
 
    left = 0
    right = i - 1
    ind = -1
 
    # Binary Search for index to left
    while (left <= right):
 
        mid = (left + right) // 2
        if (arr[mid] < val):
            left = mid + 1
 
        else:
            right = mid - 1
 
            # update index
            ind = mid
 
    # Return the number of elements
    # by subtracting indices
    return i - ind + 1 if ind != -1 else 1
 
# Function to perform the Binary
# Search to the right of arr[i]
# over the given range
def rightSearch(arr, val, i):
   
    # Base Case
    if (i == len(arr) - 1):
        return 1
 
    left = i + 1
    right = len(arr) - 1
    ind = -1
 
    # Binary Search for index to right
    while (left <= right):
 
        mid = (left + right) // 2
 
        if (arr[mid] > val):
            right = mid - 1
        else:
            left = mid + 1
 
            # Update the index
            ind = mid
 
    # Return the number of elements
    # by subtracting indices
    return ind - i + 1 if ind != -1 else 1
 
# Driver Code
arr = [1, 3, 5, 9, 14]
N = len(arr)
D = 4
minMax = minMaxRange(arr, D, N)
 
# Function Call
print(f"{minMax[0]}  {minMax[1]}")
 
# This code is contributed by gfgking

C#

// C# program for the above approach
using System;
 
class GFG
{
 
    // Function to find the minimum and
    // maximum number of points included
    // in a range of distance D
    public static int[] minMaxRange(int[] arr, int D, int N)
    {
 
        // Stores the minimum and maximum
        // number of points that lies
        // over the distance of D
        int max = 1, min = N;
 
        // Iterate the array
        for (int i = 0; i < N; i++)
        {
 
            // Count of elements included
            // to left of point at index i
            int dist = leftSearch(
                arr, arr[i] - D, i);
 
            // Update the minimum number
            // of points
            min = Math.Min(min, dist);
 
            // Update the maximum number
            // of points
            max = Math.Max(max, dist);
 
            // Count of elements included
            // to right of point at index i
            dist = rightSearch(
                arr, arr[i] + D, i);
 
            // Update the minimum number
            // of points
            min = Math.Min(min, dist);
 
            // Update the maximum number
            // of points
            max = Math.Max(max, dist);
        }
 
        // Return the array
        return new int[] { min, max };
    }
 
    // Function to perform the Binary
    // Search to the left of arr[i]
    // over the given range
    public static int leftSearch(
        int[] arr, int val, int i)
    {
        // Base Case
        if (i == 0)
            return 1;
 
        int left = 0, right = i - 1;
        int ind = -1;
 
        // Binary Search for index to left
        while (left <= right)
        {
 
            int mid = (left + right) / 2;
            if (arr[mid] < val)
            {
                left = mid + 1;
            }
            else
            {
                right = mid - 1;
 
                // update index
                ind = mid;
            }
        }
 
        // Return the number of elements
        // by subtracting indices
        return ind != -1 ? i - ind + 1 : 1;
    }
 
    // Function to perform the Binary
    // Search to the right of arr[i]
    // over the given range
    public static int rightSearch(
        int[] arr, int val, int i)
    {
        // Base Case
        if (i == arr.Length - 1)
            return 1;
 
        int left = i + 1;
        int right = arr.Length - 1;
        int ind = -1;
 
        // Binary Search for index to right
        while (left <= right)
        {
 
            int mid = (left + right) / 2;
            if (arr[mid] > val)
            {
                right = mid - 1;
            }
            else
            {
                left = mid + 1;
 
                // Update the index
                ind = mid;
            }
        }
 
        // Return the number of elements
        // by subtracting indices
        return ind != -1 ? ind - i + 1 : 1;
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 1, 3, 5, 9, 14 };
        int N = arr.Length;
        int D = 4;
        int[] minMax = minMaxRange(arr, D, N);
 
        // Function Call
        Console.Write(minMax[0] + " " + minMax[1]);
    }
}
 
// This code is contributed by gfgking.

Javascript

<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the minimum and
        // maximum number of points included
        // in a range of distance D
        function minMaxRange(
            arr, D, N) {
 
            // Stores the minimum and maximum
            // number of points that lies
            // over the distance of D
            let max = 1, min = N;
 
            // Iterate the array
            for (let i = 0; i < N; i++) {
 
                // Count of elements included
                // to left of point at index i
                let dist = leftSearch(
                    arr, arr[i] - D, i);
 
                // Update the minimum number
                // of points
                min = Math.min(min, dist);
 
                // Update the maximum number
                // of points
                max = Math.max(max, dist);
 
                // Count of elements included
                // to right of point at index i
                dist = rightSearch(
                    arr, arr[i] + D, i);
 
                // Update the minimum number
                // of points
                min = Math.min(min, dist);
 
                // Update the maximum number
                // of points
                max = Math.max(max, dist);
            }
 
            // Return the array
            return [min, max];
        }
 
        // Function to perform the Binary
        // Search to the left of arr[i]
        // over the given range
        function leftSearch(
            arr, val, i) {
            // Base Case
            if (i == 0)
                return 1;
 
            let left = 0, right = i - 1;
            let ind = -1;
 
            // Binary Search for index to left
            while (left <= right) {
 
                let mid = Math.floor((left + right) / 2);
                if (arr[mid] < val) {
                    left = mid + 1;
                }
                else {
                    right = mid - 1;
 
                    // update index
                    ind = mid;
                }
            }
 
            // Return the number of elements
            // by subtracting indices
            return ind != -1 ? i - ind + 1 : 1;
        }
 
        // Function to perform the Binary
        // Search to the right of arr[i]
        // over the given range
        function rightSearch(
            arr, val, i) {
            // Base Case
            if (i == arr.length - 1)
                return 1;
 
            let left = i + 1;
            let right = arr.length - 1;
            let ind = -1;
 
            // Binary Search for index to right
            while (left <= right) {
 
                let mid = Math.floor((left + right) / 2);
                if (arr[mid] > val) {
                    right = mid - 1;
                }
                else {
                    left = mid + 1;
 
                    // Update the index
                    ind = mid;
                }
            }
 
            // Return the number of elements
            // by subtracting indices
            return ind != -1 ? ind - i + 1 : 1;
        }
 
        // Driver Code
 
        let arr = [1, 3, 5, 9, 14];
        let N = arr.length;
        let D = 4;
        let minMax = minMaxRange(arr, D, N);
 
        // Function Call
        document.write(
            minMax[0] + " " + minMax[1]);
 
 
// This code is contributed by Potta Lokesh
    </script>
Producción: 

1 3

 

Complejidad de tiempo: O(N*log N)
Espacio auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por darkphoenix349 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *