Dado un rectángulo de largo l y ancho b , la tarea es encontrar el rombo más grande que se puede inscribir en el rectángulo.
Ejemplos :
Input : l = 5, b = 4 Output : 10 Input : l = 16, b = 6 Output : 48
De la figura, podemos ver, el rombo más grande que podría inscribirse dentro del rectángulo tendrá sus diagonales iguales a la longitud y la anchura del rectángulo.
Entonces, Área del rombo, A = (l*b)/2
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the biggest rhombus // which can be inscribed within the rectangle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the biggest rhombus float rhombusarea(float l, float b) { // the length and breadth cannot be negative if (l < 0 || b < 0) return -1; // area of the rhombus return (l * b) / 2; } // Driver code int main() { float l = 16, b = 6; cout << rhombusarea(l, b) << endl; return 0; }
Java
// Java Program to find the // biggest rhombus which can be // inscribed within the rectangle import java.io.*; class GFG { // Function to find the area // of the biggest rhombus static float rhombusarea(float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the rhombus return (l * b) / 2; } // Driver code public static void main (String[] args) { float l = 16, b = 6; System.out.println(rhombusarea(l, b)); } } // This code is contributed // by inder_verma
Python3
# Python 3 Program to find the biggest rhombus # which can be inscribed within the rectangle # Function to find the area # of the biggest rhombus def rhombusarea(l,b): # the length and breadth cannot be negative if (l < 0 or b < 0): return -1 # area of the rhombus return (l * b) / 2 # Driver code if __name__ == '__main__': l = 16 b = 6 print(rhombusarea(l, b))
C#
// C# Program to find the // biggest rhombus which can be // inscribed within the rectangle using System; class GFG { // Function to find the area // of the biggest rhombus static float rhombusarea(float l, float b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the rhombus return (l * b) / 2; } // Driver code public static void Main () { float l = 16, b = 6; Console.WriteLine(rhombusarea(l, b)); } } // This code is contributed // by shs
PHP
<?php // PHP Program to find the // biggest rhombus which can be // inscribed within the rectangle // Function to find the area // of the biggest rhombus function rhombusarea($l, $b) { // the length and breadth // cannot be negative if ($l < 0 || $b < 0) return -1; // area of the rhombus return ($l * $b) / 2; } // Driver code $l = 16; $b = 6; echo rhombusarea($l, $b) . "\n"; // This code is contributed // by Akanksha Rai(Abby_akku)
Javascript
<script> // javascript Program to find the // biggest rhombus which can be // inscribed within the rectangle // Function to find the area // of the biggest rhombus function rhombusarea(l,b) { // the length and breadth // cannot be negative if (l < 0 || b < 0) return -1; // area of the rhombus return (l * b) / 2; } // Driver code var l = 16, b = 6; document.write(rhombusarea(l, b)); // This code contributed by Princi Singh </script>
Producción:
48
Complejidad del tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA