Dada una ecuación diferencial dy/dx = f(x, y) con condición inicial y(x0) = y0. Encuentre su solución aproximada usando el método de Euler .
Método de Euler:
en matemáticas y ciencias computacionales, el método de Euler (también llamado
método de Euler directo) es un procedimiento numérico de primer orden para resolver ecuaciones diferenciales
ordinarias (EDO) con un valor inicial dado.
Considere una ecuación diferencial dy/dx = f(x, y) con la condición inicial y(x0)=y0
, entonces la aproximación sucesiva de esta ecuación puede estar dada por:
y(n+1) = y(n) + h * f(x(n), y(n))
donde h = (x(n) – x(0)) / n
h indica el tamaño del paso. Elegir
valores más pequeños de h conduce a resultados más precisos
y más tiempo de cálculo.
Ejemplo :
Consider below differential equation dy/dx = (x + y + xy) with initial condition y(0) = 1 and step size h = 0.025. Find y(0.1). Solution: f(x, y) = (x + y + xy) x0 = 0, y0 = 1, h = 0.025 Now we can calculate y1 using Euler formula y1 = y0 + h * f(x0, y0) y1 = 1 + 0.025 *(0 + 1 + 0 * 1) y1 = 1.025 y(0.025) = 1.025. Similarly we can calculate y(0.050), y(0.075), ....y(0.1). y(0.1) = 1.11167
C++
/* CPP Program to find approximation of a ordinary differential equation using euler method.*/ #include <iostream> using namespace std; // Consider a differential equation // dy/dx=(x + y + xy) float func(float x, float y) { return (x + y + x * y); } // Function for Euler formula void euler(float x0, float y, float h, float x) { float temp = -0; // Iterating till the point at which we // need approximation while (x0 < x) { temp = y; y = y + h * func(x0, y); x0 = x0 + h; } // Printing approximation cout << "Approximate solution at x = " << x << " is " << y << endl; } // Driver program int main() { // Initial Values float x0 = 0; float y0 = 1; float h = 0.025; // Value of x at which we need approximation float x = 0.1; euler(x0, y0, h, x); return 0; }
Java
// Java program to find approximation of an ordinary // differential equation using euler method import java.io.*; class Euler { // Consider a differential equation // dy/dx=(x + y + xy) float func(float x, float y) { return (x + y + x * y); } // Function for Euler formula void euler(float x0, float y, float h, float x) { float temp = -0; // Iterating till the point at which we // need approximation while (x0 < x) { temp = y; y = y + h * func(x0, y); x0 = x0 + h; } // Printing approximation System.out.println("Approximate solution at x = " + x + " is " + y); } // Driver program public static void main(String args[]) throws IOException { Euler obj = new Euler(); // Initial Values float x0 = 0; float y0 = 1; float h = 0.025f; // Value of x at which we need approximation float x = 0.1f; obj.euler(x0, y0, h, x); } } // This code is contributed by Anshika Goyal.
Python3
# Python Code to find approximation # of a ordinary differential equation # using euler method. # Consider a differential equation # dy / dx =(x + y + xy) def func( x, y ): return (x + y + x * y) # Function for euler formula def euler( x0, y, h, x ): temp = -0 # Iterating till the point at which we # need approximation while x0 < x: temp = y y = y + h * func(x0, y) x0 = x0 + h # Printing approximation print("Approximate solution at x = ", x, " is ", "%.6f"% y) # Driver Code # Initial Values x0 = 0 y0 = 1 h = 0.025 # Value of x at which we need approximation x = 0.1 euler(x0, y0, h, x)
C#
// C# program to find approximation of an ordinary // differential equation using euler method using System; class GFG { // Consider a differential equation // dy/dx=(x + y + xy) static float func(float x, float y) { return (x + y + x * y); } // Function for Euler formula static void euler(float x0, float y, float h, float x) { // Iterating till the point at which we // need approximation while (x0 < x) { y = y + h * func(x0, y); x0 = x0 + h; } // Printing approximation Console.WriteLine("Approximate solution at x = " + x + " is " + y); } // Driver program public static void Main() { // Initial Values float x0 = 0; float y0 = 1; float h = 0.025f; // Value of x at which we need // approximation float x = 0.1f; euler(x0, y0, h, x); } } // This code is contributed by Vt_m.
PHP
<?php // PHP Program to find approximation // of a ordinary differential equation // using euler method // Consider a differential equation // dy/dx=(x + y + xy) function func($x, $y) { return ($x + $y + $x * $y); } // Function for Euler formula function euler( $x0, $y, $h, $x) { $temp = -0; // Iterating till the point // at which we need approximation while($x0 < $x) { $temp = $y; $y = $y + $h * func($x0, $y); $x0 = $x0 + $h; } // Printing approximation echo "Approximate solution at x = ", $x, " is ", $y, "\n"; } // Driver Code // Initial Values $x0 = 0; $y0 = 1; $h = 0.025; // Value of x at which // we need approximation $x = 0.1; euler($x0, $y0, $h, $x); // This code contributed by aj_36 ?>
Javascript
<script> // JavaScript program to find approximation of an ordinary // differential equation using euler method // Consider a differential equation // dy/dx=(x + y + xy) function func(x, y) { return (x + y + x * y); } // Function for Euler formula function euler(x0, y, h, x) { let temp = -0; // Iterating till the point at which we // need approximation while (x0 < x) { temp = y; y = y + h * func(x0, y); x0 = x0 + h; } // Printing approximation document.write("Approximate solution at x = " + x + " is " + y); } // Driver Code // Initial Values let x0 = 0; let y0 = 1; let h = 0.025; // Value of x at which we need approximation let x = 0.1; euler(x0, y0, h, x); // This code is contributed by chinmoy1997pal. </script>
Producción :
Approximate solution at x = 0.1 is 1.11167
Publicación traducida automáticamente
Artículo escrito por Sharad_Bhardwaj y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA