Esta función matemática ayuda al usuario a calcular la hipotenusa para el triángulo rectángulo, dado su lado y su perpendicular. El resultado es equivalente a Equivalente a sqrt(x1**2 + x2**2) , por elementos.
Sintaxis:
numpy.exp2(arr1, arr2[, out]) = ufunc 'hypot') :
Parámetros:
arr1, arr2 : [array_like] Legs(side and perpendicular) of triangle out : [ndarray, optional] Output array with result.
Devolver :
An array having hypotenuse of the right triangle.
Código #1: Trabajando
# Python3 program explaining # hypot() function import numpy as np leg1 = [12, 3, 4, 6] print ("leg1 array : ", leg1) leg2 = [5, 4, 3, 8] print ("leg2 array : ", leg2) result = np.hypot(leg1, leg2) print("\nHypotenuse is as follows :") print(result)
Producción :
leg1 array : [12, 3, 4, 6] leg2 array : [5, 4, 3, 8] Hypotenuse is as follows : [ 13. 5. 5. 10.]
Código n.º 2: trabajar con una array 2D
# Python3 program explaining # hypot() function import numpy as np leg1 = np.random.rand(3, 4) print ("leg1 array : \n", leg1) leg2 = np.ones((3, 4)) print ("leg2 array : \n", leg2) result = np.hypot(leg1, leg2) print("\nHypotenuse is as follows :") print(result)
Producción :
leg1 array : [[ 0.57520509 0.12043366 0.50011671 0.13800957] [ 0.0528084 0.17827692 0.44236813 0.87758732] [ 0.94926413 0.47816742 0.46111934 0.63728903]] leg2 array : [[ 1. 1. 1. 1.] [ 1. 1. 1. 1.] [ 1. 1. 1. 1.]] Hypotenuse is as follows : [[ 1.15362944 1.00722603 1.11808619 1.0094784 ] [ 1.00139339 1.01576703 1.09347591 1.33047342] [ 1.37880469 1.10844219 1.10119528 1.18580661]]
Código 3: Equivalente a sqrt(x1**2 + x2**2), por elementos.
# Python3 program explaining # hypot() function import numpy as np leg1 = np.random.rand(3, 4) print ("leg1 array : \n", leg1) leg2 = np.ones((3, 4)) print ("leg2 array : \n", leg2) result = np.sqrt((leg1 * leg1) + (leg2 * leg2)) print("\nHypotenuse is as follows :") print(result)
Producción :
leg1 array : [[ 0.7015073 0.89047987 0.1595603 0.27557254] [ 0.67249153 0.16430312 0.70137114 0.48763522] [ 0.68067777 0.52154819 0.04339669 0.2239366 ]] leg2 array : [[ 1. 1. 1. 1.] [ 1. 1. 1. 1.] [ 1. 1. 1. 1.]] Hypotenuse is as follows : [[ 1.15362944 1.00722603 1.11808619 1.0094784 ] [ 1.00139339 1.01576703 1.09347591 1.33047342] [ 1.37880469 1.10844219 1.10119528 1.18580661]]
Referencias:
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.hypot.html#numpy.hypot
.
Publicación traducida automáticamente
Artículo escrito por Mohit Gupta_OMG 🙂 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA