Dado un número complejo z , la tarea es determinar el módulo de este número complejo. Nota: Dado un número complejo z = a + ib , el módulo se denota por |z| y se define como Ejemplos:
Entrada: z = 3 + 4i Salida: 5 |z| = (3 2 + 4 2 ) 1/2 = (9 + 16) 1/2 = 5 Entrada: z = 6 – 8i Salida: 10 Explicación: |z| = (6 2 + (-8) 2 ) 1/2 = (36 + 64) 1/2 = 10
Enfoque: Para el número complejo dado z = x + iy :
- Encuentra las partes real e imaginaria, x e y respectivamente.
If z = x +iy Real part = x Imaginary part = y
- Encuentre el cuadrado de x e y por separado.
Square of Real part = x2 Square of Imaginary part = y2
- Encuentre la suma de los cuadrados calculados.
Sum = Square of Real part + Square of Imaginary part = x2 + y2
- Encuentra la raíz cuadrada de la suma calculada. Este será el módulo del número complejo dado.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the // Modulus of a Complex Number #include <bits/stdc++.h> using namespace std; // Function to find modulus // of a complex number void findModulo(string s) { int l = s.length(); int i, modulus = 0; // Storing the index of '+' if (s.find('+') < l) { i = s.find('+'); } // Storing the index of '-' else { i = s.find('-'); } // Finding the real part // of the complex number string real = s.substr(0, i); // Finding the imaginary part // of the complex number string imaginary = s.substr(i + 1, l - 1); int x = stoi(real); int y = stoi(imaginary); cout << sqrt(x * x + y * y) << "\n"; } // Driver code int main() { string s = "3+4i"; findModulo(s); return 0; }
Java
// Java program to find the // Modulus of a Complex Number import java.util.*; class GFG{ // Function to find modulus // of a complex number static void findModulo(String s) { int l = s.length(); int i, modulus = 0; // Storing the index of '+' if (s.contains("+")) { i = s.indexOf("+"); } // Storing the index of '-' else { i = s.indexOf("-"); } // Finding the real part // of the complex number String real = s.substring(0, i); // Finding the imaginary part // of the complex number String imaginary = s.substring(i + 1, l-1); int x = Integer.parseInt(real); int y = Integer.parseInt(imaginary); System.out.print(Math.sqrt(x * x + y * y)+ "\n"); } // Driver code public static void main(String[] args) { String s = "3+4i"; findModulo(s); } } // This code is contributed by Rajput-Ji
Python 3
# Python 3 program to find the # Modulus of a Complex Number from math import sqrt # Function to find modulus # of a complex number def findModulo(s): l = len(s) modulus = 0 # Storing the index of '+' if ( '+' in s ): i = s.index('+') # Storing the index of '-' else: i = s.index('-') # Finding the real part # of the complex number real = s[0:i] # Finding the imaginary part # of the complex number imaginary = s[i + 1:l - 1] x = int(real) y = int(imaginary) print(int(sqrt(x * x + y * y))) # Driver code if __name__ == '__main__': s = "3+4i" findModulo(s) # This code is contributed by Surendra_Gangwar
C#
// C# program to find the // Modulus of a Complex Number using System; public class GFG{ // Function to find modulus // of a complex number static void findModulo(String s) { int l = s.Length; int i; // Storing the index of '+' if (s.Contains("+")) { i = s.IndexOf("+"); } // Storing the index of '-' else { i = s.IndexOf("-"); } // Finding the real part // of the complex number String real = s.Substring(0, i); // Finding the imaginary part // of the complex number String imaginary = s.Substring(i + 1, l-i - 2); int x = Int32.Parse(real); int y = Int32.Parse(imaginary); Console.Write(Math.Sqrt(x * x + y * y)+ "\n"); } // Driver code public static void Main(String[] args) { String s = "3+4i"; findModulo(s); } } // This code contributed by sapnasingh4991
Javascript
// JavaScript program to find the // Modulus of a Complex Number // Function to find modulus // of a complex number function findModulo(s) { let l = s.length; let i, modulus = 0; // Storing the index of '+' if (s.indexOf('+')< l) { i = s.indexOf('+'); } // Storing the index of '-' else { i = s.indexOf('-'); } // Finding the real part // of the complex number let real = s.substring(0, i); // Finding the imaginary part // of the complex number let imaginary = s.substring(i + 1, l - 1); let x = parseInt(real); let y = parseInt(imaginary); console.log(Math.sqrt(x*x + y*y)); } // Driver code let s = "3+4i"; findModulo(s); // The code is contributed by Gautam goel (gautamgoel962)
Producción:
5