Dada una array arr[] de tamaño N > 1 . La tarea es encontrar el GCD máximo posible de la array reemplazando como máximo un elemento.
Ejemplos:
Entrada: arr[] = {6, 7, 8}
Salida: 2
Reemplace 7 con 2 y mcd(6, 2, 8) = 2,
que es el máximo posible.
Entrada: arr[] = {12, 18, 30}
Salida: 6
Acercarse:
- La idea es encontrar el valor GCD de todas las subsecuencias de longitud (N – 1) y eliminar el elemento que debe reemplazarse en la subsecuencia, ya que puede reemplazarse con cualquier otro elemento que ya esté en la subsecuencia. El GCD máximo encontrado sería la respuesta.
- Para encontrar el GCD de las subsecuencias de manera óptima, mantenga una array prefixGCD[] y suffixGCD[] utilizando programación dinámica de un solo estado .
- El valor máximo de GCD (prefijo GCD [i – 1], sufijo GCD [i + 1]) es la respuesta requerida. También tenga en cuenta que el sufijo GCD [1] y el prefijo GCD [N – 2] también deben compararse en caso de que se deba reemplazar el primer o el último elemento.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum // possible gcd after replacing // a single element int MaxGCD(int a[], int n) { // Prefix and Suffix arrays int Prefix[n + 2]; int Suffix[n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) { ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } // Driver code int main() { int a[] = { 6, 7, 8 }; int n = sizeof(a) / sizeof(a[0]); cout << MaxGCD(a, n); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the maximum // possible gcd after replacing // a single element static int MaxGCD(int a[], int n) { // Prefix and Suffix arrays int []Prefix = new int[n + 2]; int []Suffix = new int[n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = Math.max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) { ans = Math.max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void main(String[] args) { int a[] = { 6, 7, 8 }; int n = a.length; System.out.println(MaxGCD(a, n)); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 implementation of the approach from math import gcd as __gcd # Function to return the maximum # possible gcd after replacing # a single element def MaxGCD(a, n) : # Prefix and Suffix arrays Prefix = [0] * (n + 2); Suffix = [0] * (n + 2); # Single state dynamic programming relation # for storing gcd of first i elements # from the left in Prefix[i] Prefix[1] = a[0]; for i in range(2, n + 1) : Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); # Initializing Suffix array Suffix[n] = a[n - 1]; # Single state dynamic programming relation # for storing gcd of all the elements having # index greater than or equal to i in Suffix[i] for i in range(n - 1, 0, -1) : Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); # If first or last element of # the array has to be replaced ans = max(Suffix[2], Prefix[n - 1]); # If any other element is replaced for i in range(2, n) : ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); # Return the maximized gcd return ans; # Driver code if __name__ == "__main__" : a = [ 6, 7, 8 ]; n = len(a); print(MaxGCD(a, n)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum // possible gcd after replacing // a single element static int MaxGCD(int []a, int n) { // Prefix and Suffix arrays int []Prefix = new int[n + 2]; int []Suffix = new int[n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = Math.Max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) { ans = Math.Max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void Main(String[] args) { int []a = { 6, 7, 8 }; int n = a.Length; Console.WriteLine(MaxGCD(a, n)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach function gcd(a, b) { if (b==0) { return a; } return gcd(b, a % b); } // Function to return the maximum // possible gcd after replacing // a single element function MaxGCD(a, n) { // Prefix and Suffix arrays var Prefix = Array(n + 2).fill(0); var Suffix = Array(n + 2).fill(0); var i; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (i = 2; i <= n; i++) { Prefix[i] = gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (i = n - 1; i >= 1; i--) { Suffix[i] = gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced var ans = Math.max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (i = 2; i < n; i++) { ans = Math.max(ans, gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } // Driver code var a = [6, 7, 8]; n = a.length; document.write(MaxGCD(a, n)); </script>
Producción:
2
Complejidad de tiempo: O(n * max(a, b))
Espacio Auxiliar: O(n)
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA