Búsqueda ternaria

La búsqueda ternaria es un algoritmo de disminución (por constante) y conquista que se puede usar para encontrar un elemento en una array . Es similar a la búsqueda binaria donde dividimos la array en dos partes, pero en este algoritmo, dividimos la array dada en tres partes y determinamos cuál tiene la clave (elemento buscado). Podemos dividir la array en tres partes tomando mid1 y mid2, que se pueden calcular como se muestra a continuación. Inicialmente, l y r serán iguales a 0 y n-1 respectivamente, donde n es la longitud de la array. 

Es lo mismo que la búsqueda binaria. La única diferencia es que reduce un poco más la complejidad del tiempo. Su complejidad temporal es O(log n base 3) y la de búsqueda binaria es O(log n base 2).

mid1 = l + (rl)/3 
mid2 = r – (rl)/3 

Nota: la array debe ordenarse para realizar una búsqueda ternaria en ella.

Pasos para realizar la búsqueda ternaria: 

  1. Primero, comparamos la clave con el elemento en mid1. Si se encuentra igual, devolvemos mid1.
  2. Si no, comparamos la clave con el elemento en mid2. Si se encuentra igual, devolvemos mid2.
  3. De lo contrario, verificamos si la clave es menor que el elemento en mid1. En caso afirmativo, recurra a la primera parte.
  4. De lo contrario, verificamos si la clave es mayor que el elemento en mid2. En caso afirmativo, recurra a la tercera parte.
  5. Si no, recurrimos a la segunda parte (media).

Complete Interview Preparation - GFG

Ejemplo:

Implementación recursiva de búsqueda ternaria 

C++

// C++ program to illustrate
// recursive approach to ternary search
#include <bits/stdc++.h>
using namespace std;
  
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
    if (r >= l) {
  
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
  
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
  
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
        if (key < ar[mid1]) {
  
            // The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar);
        }
        else if (key > ar[mid2]) {
  
            // The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar);
        }
        else {
  
            // The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
        }
    }
  
    // Key not found
    return -1;
}
  
// Driver code
int main()
{
    int l, r, p, key;
  
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    cout << "Index of " << key
         << " is " << p << endl;
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    cout << "Index of " << key
         << " is " << p << endl;
}
  
// This code is contributed
// by Akanksha_Rai

C

// C program to illustrate
// recursive approach to ternary search
  
#include <stdio.h>
  
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
{
    if (r >= l) {
  
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
  
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
  
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
  
        if (key < ar[mid1]) {
  
            // The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar);
        }
        else if (key > ar[mid2]) {
  
            // The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar);
        }
        else {
  
            // The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
        }
    }
  
    // Key not found
    return -1;
}
  
// Driver code
int main()
{
    int l, r, p, key;
  
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    printf("Index of %d is %d\n", key, p);
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    printf("Index of %d is %d", key, p);
}

Java

// Java program to illustrate
// recursive approach to ternary search
  
class GFG {
  
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int ar[])
    {
        if (r >= l) {
  
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
  
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
  
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
  
            if (key < ar[mid1]) {
  
                // The key lies in between l and mid1
                return ternarySearch(l, mid1 - 1, key, ar);
            }
            else if (key > ar[mid2]) {
  
                // The key lies in between mid2 and r
                return ternarySearch(mid2 + 1, r, key, ar);
            }
            else {
  
                // The key lies in between mid1 and mid2
                return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
            }
        }
  
        // Key not found
        return -1;
    }
  
    // Driver code
    public static void main(String args[])
    {
        int l, r, p, key;
  
        // Get the array
        // Sort the array if not sorted
        int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
        // Starting index
        l = 0;
  
        // length of array
        r = 9;
  
        // Checking for 5
  
        // Key to be searched in the array
        key = 5;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        System.out.println("Index of " + key + " is " + p);
  
        // Checking for 50
  
        // Key to be searched in the array
        key = 50;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        System.out.println("Index of " + key + " is " + p);
    }
}

Python3

# Python3 program to illustrate
# recursive approach to ternary search
import math as mt
  
# Function to perform Ternary Search
def ternarySearch(l, r, key, ar):
  
    if (r >= l):
  
        # Find the mid1 and mid2
        mid1 = l + (r - l) //3
        mid2 = r - (r - l) //3
  
        # Check if key is present at any mid
        if (ar[mid1] == key): 
            return mid1
          
        if (ar[mid2] == key): 
            return mid2
          
        # Since key is not present at mid,
        # check in which region it is present
        # then repeat the Search operation
        # in that region
        if (key < ar[mid1]): 
  
            # The key lies in between l and mid1
            return ternarySearch(l, mid1 - 1, key, ar)
          
        elif (key > ar[mid2]): 
  
            # The key lies in between mid2 and r
            return ternarySearch(mid2 + 1, r, key, ar)
          
        else: 
  
            # The key lies in between mid1 and mid2
            return ternarySearch(mid1 + 1, 
                                 mid2 - 1, key, ar)
          
    # Key not found
    return -1
  
# Driver code
l, r, p = 0, 9, 5
  
# Get the array
# Sort the array if not sorted
ar = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
  
# Starting index
l = 0
  
# length of array
r = 9
  
# Checking for 5
  
# Key to be searched in the array
key = 5
  
# Search the key using ternarySearch
p = ternarySearch(l, r, key, ar)
  
# Print the result
print("Index of", key, "is", p)
  
# Checking for 50
  
# Key to be searched in the array
key = 50
  
# Search the key using ternarySearch
p = ternarySearch(l, r, key, ar)
  
# Print the result
print("Index of", key, "is", p)
  
# This code is contributed by 
# Mohit kumar 29

C#

// CSharp program to illustrate
// recursive approach to ternary search
using System;
  
class GFG {
  
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int[] ar)
    {
        if (r >= l) {
  
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
  
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
  
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
  
            if (key < ar[mid1]) {
  
                // The key lies in between l and mid1
                return ternarySearch(l, mid1 - 1, key, ar);
            }
            else if (key > ar[mid2]) {
  
                // The key lies in between mid2 and r
                return ternarySearch(mid2 + 1, r, key, ar);
            }
            else {
  
                // The key lies in between mid1 and mid2
                return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
            }
        }
  
        // Key not found
        return -1;
    }
  
    // Driver code
    public static void Main()
    {
        int l, r, p, key;
  
        // Get the array
        // Sort the array if not sorted
        int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
        // Starting index
        l = 0;
  
        // length of array
        r = 9;
  
        // Checking for 5
  
        // Key to be searched in the array
        key = 5;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
  
        // Checking for 50
  
        // Key to be searched in the array
        key = 50;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
    }
}
  
// This code is contributed by Ryuga

PHP

<?php
// PHP program to illustrate
// recursive approach to ternary search
  
// Function to perform Ternary Search
function ternarySearch($l, $r, $key, $ar)
{
    if ($r >= $l)
    {
  
        // Find the mid1 and mid2
        $mid1 = (int)($l + ($r - $l) / 3);
        $mid2 = (int)($r - ($r - $l) / 3);
  
        // Check if key is present at any mid
        if ($ar[$mid1] == $key) 
        {
            return $mid1;
        }
        if ($ar[$mid2] == $key)
        {
            return $mid2;
        }
  
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
        if ($key < $ar[$mid1]) 
        {
  
            // The key lies in between l and mid1
            return ternarySearch($l, $mid1 - 1, 
                                     $key, $ar);
        }
        else if ($key > $ar[$mid2]) 
        {
  
            // The key lies in between mid2 and r
            return ternarySearch($mid2 + 1, $r,     
                                 $key, $ar);
        }
        else
        {
  
            // The key lies in between mid1 and mid2
            return ternarySearch($mid1 + 1, $mid2 - 1,
                                            $key, $ar);
        }
    }
  
    // Key not found
    return -1;
}
  
// Driver code
  
// Get the array
// Sort the array if not sorted
$ar = array( 1, 2, 3, 4, 5, 
             6, 7, 8, 9, 10 );
  
// Starting index
$l = 0;
  
// length of array
$r = 9;
  
// Checking for 5
  
// Key to be searched in the array
$key = 5;
  
// Search the key using ternarySearch
$p = ternarySearch($l, $r, $key, $ar);
  
// Print the result
echo "Index of ", $key,
     " is ", (int)$p, "\n";
  
// Checking for 50
  
// Key to be searched in the array
$key = 50;
  
// Search the key using ternarySearch
$p = ternarySearch($l, $r, $key, $ar);
  
// Print the result
echo "Index of ", $key, 
     " is ", (int)$p, "\n";
  
// This code is contributed by Arnab Kundu
?>

Javascript

<script>
  
    // JavaScript program to illustrate
    // recursive approach to ternary search
      
    // Function to perform Ternary Search
    function ternarySearch(l, r, key, ar)
    {
        if (r >= l) {
   
            // Find the mid1 and mid2
            let mid1 = l + parseInt((r - l) / 3, 10);
            let mid2 = r - parseInt((r - l) / 3, 10);
   
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
   
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
   
            if (key < ar[mid1]) {
   
                // The key lies in between l and mid1
                return ternarySearch(l, mid1 - 1, key, ar);
            }
            else if (key > ar[mid2]) {
   
                // The key lies in between mid2 and r
                return ternarySearch(mid2 + 1, r, key, ar);
            }
            else {
   
                // The key lies in between mid1 and mid2
                return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
            }
        }
   
        // Key not found
        return -1;
    }
      
    let l, r, p, key;
   
    // Get the array
    // Sort the array if not sorted
    let ar = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    document.write("Index of " + key + " is " + p + "</br>");
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    document.write("Index of " + key + " is " + p);
          
</script>
Producción: 

Index of 5 is 4
Index of 50 is -1

 

Complejidad de tiempo: O (log 3 n)

Espacio Auxiliar: O(log 3 n)

Enfoque iterativo de búsqueda ternaria 

C++

// C++ program to illustrate
// iterative approach to ternary search
  
#include <iostream>
using namespace std;
  
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
  
{
    while (r >= l) {
  
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
  
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
  
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
  
        if (key < ar[mid1]) {
  
            // The key lies in between l and mid1
            r = mid1 - 1;
        }
        else if (key > ar[mid2]) {
  
            // The key lies in between mid2 and r
            l = mid2 + 1;
        }
        else {
  
            // The key lies in between mid1 and mid2
            l = mid1 + 1;
            r = mid2 - 1;
        }
    }
  
    // Key not found
    return -1;
}
  
// Driver code
int main()
{
    int l, r, p, key;
  
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    cout << "Index of "<<key<<" is " << p << endl;
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    cout << "Index of "<<key<<" is " << p;
}

C

// C program to illustrate
// iterative approach to ternary search
  
#include <stdio.h>
  
// Function to perform Ternary Search
int ternarySearch(int l, int r, int key, int ar[])
  
{
    while (r >= l) {
  
        // Find the mid1 and mid2
        int mid1 = l + (r - l) / 3;
        int mid2 = r - (r - l) / 3;
  
        // Check if key is present at any mid
        if (ar[mid1] == key) {
            return mid1;
        }
        if (ar[mid2] == key) {
            return mid2;
        }
  
        // Since key is not present at mid,
        // check in which region it is present
        // then repeat the Search operation
        // in that region
  
        if (key < ar[mid1]) {
  
            // The key lies in between l and mid1
            r = mid1 - 1;
        }
        else if (key > ar[mid2]) {
  
            // The key lies in between mid2 and r
            l = mid2 + 1;
        }
        else {
  
            // The key lies in between mid1 and mid2
            l = mid1 + 1;
            r = mid2 - 1;
        }
    }
  
    // Key not found
    return -1;
}
  
// Driver code
int main()
{
    int l, r, p, key;
  
    // Get the array
    // Sort the array if not sorted
    int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    printf("Index of %d is %d\n", key, p);
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    printf("Index of %d is %d", key, p);
}

Java

// Java program to illustrate
// the iterative approach to ternary search
  
class GFG {
  
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int ar[])
  
    {
        while (r >= l) {
  
            // Find the mid1  mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
  
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
  
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
  
            if (key < ar[mid1]) {
  
                // The key lies in between l and mid1
                r = mid1 - 1;
            }
            else if (key > ar[mid2]) {
  
                // The key lies in between mid2 and r
                l = mid2 + 1;
            }
            else {
  
                // The key lies in between mid1 and mid2
                l = mid1 + 1;
                r = mid2 - 1;
            }
        }
  
        // Key not found
        return -1;
    }
  
    // Driver code
    public static void main(String args[])
    {
        int l, r, p, key;
  
        // Get the array
        // Sort the array if not sorted
        int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
        // Starting index
        l = 0;
  
        // length of array
        r = 9;
  
        // Checking for 5
  
        // Key to be searched in the array
        key = 5;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        System.out.println("Index of " + key + " is " + p);
  
        // Checking for 50
  
        // Key to be searched in the array
        key = 50;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        System.out.println("Index of " + key + " is " + p);
    }
}

Python3

# Python 3 program to illustrate iterative
# approach to ternary search
  
# Function to perform Ternary Search
def ternarySearch(l, r, key, ar):
    while r >= l:
          
        # Find mid1 and mid2
        mid1 = l + (r-l) // 3
        mid2 = r - (r-l) // 3
  
        # Check if key is at any mid
        if key == ar[mid1]:
            return mid1
        if key == mid2:
            return mid2
  
        # Since key is not present at mid, 
        # Check in which region it is present
        # Then repeat the search operation in that region
        if key < ar[mid1]:
            # key lies between l and mid1
            r = mid1 - 1
        elif key > ar[mid2]:
            # key lies between mid2 and r
            l = mid2 + 1
        else:
            # key lies between mid1 and mid2
            l = mid1 + 1
            r = mid2 - 1
  
    # key not found
    return -1
  
# Driver code
  
# Get the list
# Sort the list if not sorted
ar = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  
# Starting index
l = 0
  
# Length of list
r = 9
  
# Checking for 5
# Key to be searched in the list
key = 5
  
# Search the key using ternary search
p = ternarySearch(l, r, key, ar)
  
# Print the result
print("Index of", key, "is", p)
  
# Checking for 50
# Key to be searched in the list
key = 50
  
# Search the key using ternary search
p = ternarySearch(l, r, key, ar)
  
# Print the result
print("Index of", key, "is", p)
  
# This code has been contributed by Sujal Motagi

C#

// C# program to illustrate the iterative
// approach to ternary search
using System;
  
public class GFG {
  
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r,
                             int key, int[] ar)
  
    {
        while (r >= l) {
  
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
  
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
  
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
  
            if (key < ar[mid1]) {
  
                // The key lies in between l and mid1
                r = mid1 - 1;
            }
            else if (key > ar[mid2]) {
  
                // The key lies in between mid2 and r
                l = mid2 + 1;
            }
            else {
  
                // The key lies in between mid1 and mid2
                l = mid1 + 1;
                r = mid2 - 1;
            }
        }
  
        // Key not found
        return -1;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        int l, r, p, key;
  
        // Get the array
        // Sort the array if not sorted
        int[] ar = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
  
        // Starting index
        l = 0;
  
        // length of array
        r = 9;
  
        // Checking for 5
  
        // Key to be searched in the array
        key = 5;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
  
        // Checking for 50
  
        // Key to be searched in the array
        key = 50;
  
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
  
        // Print the result
        Console.WriteLine("Index of " + key + " is " + p);
    }
}
  
// This code has been contributed by 29AjayKumar

Javascript

<script>
  
    // JavaScript program to illustrate the iterative
    // approach to ternary search
      
    // Function to perform Ternary Search
    function ternarySearch(l, r, key, ar)
   
    {
        while (r >= l) {
   
            // Find the mid1 and mid2
            let mid1 = l + parseInt((r - l) / 3, 10);
            let mid2 = r - parseInt((r - l) / 3, 10);
   
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
   
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
   
            if (key < ar[mid1]) {
   
                // The key lies in between l and mid1
                r = mid1 - 1;
            }
            else if (key > ar[mid2]) {
   
                // The key lies in between mid2 and r
                l = mid2 + 1;
            }
            else {
   
                // The key lies in between mid1 and mid2
                l = mid1 + 1;
                r = mid2 - 1;
            }
        }
   
        // Key not found
        return -1;
    }
      
    let l, r, p, key;
   
    // Get the array
    // Sort the array if not sorted
    let ar = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
  
    // Starting index
    l = 0;
  
    // length of array
    r = 9;
  
    // Checking for 5
  
    // Key to be searched in the array
    key = 5;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    document.write("Index of " + key + " is " + p + "</br>");
  
    // Checking for 50
  
    // Key to be searched in the array
    key = 50;
  
    // Search the key using ternarySearch
    p = ternarySearch(l, r, key, ar);
  
    // Print the result
    document.write("Index of " + key + " is " + p);
      
</script>
Producción: 

Index of 5 is 4
Index of 50 is -1

 

Complejidad de tiempo: O (log 3 n), donde n es el tamaño de la array.

Espacio Auxiliar: O(1)

Búsqueda binaria Vs Búsqueda ternaria

La complejidad temporal de la búsqueda binaria es mayor que la búsqueda ternaria, pero eso no significa que la búsqueda ternaria sea mejor. En realidad, la cantidad de comparaciones en la búsqueda ternaria es mucho mayor, lo que la hace más lenta que la búsqueda binaria.
 

Usos: Para encontrar el máximo o mínimo de una función unimodal .
Problemas de Hackerearth en la búsqueda ternaria
 

Publicación traducida automáticamente

Artículo escrito por Shivam_72 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *