Dada una array arr[] de N enteros, la tarea es encontrar el producto de todos los pares posibles de la array dada, como:
- (arr[i], arr[i]) también se considera un par válido.
- (arr[i], arr[j]) y (arr[j], arr[i]) se consideran dos pares diferentes.
Imprime el módulo de respuesta resultante 10^9+7.
Ejemplos:
Entrada: arr[] = {1, 2}
Salida: 16
Explicación:
Todos los pares válidos son (1, 1), (1, 2), (2, 1) y (2, 2).
Por lo tanto, 1 * 1 * 1 * 2 * 2 * 1 * 2 * 2 = 16Entrada: arr[] = {1, 2, 3}
Salida: 46656
Explicación:
Todos los pares válidos son (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) ), (2, 3), (3, 1), (3, 2) y (3, 3).
Por lo tanto, el producto es 1*1*1**2*1*3*2*1*2*2*2*3*3*1*3*2*3*3 = 46656
Enfoque ingenuo: para resolver el problema mencionado anteriormente, el método ingenuo es encontrar todos los pares posibles y calcular el producto de los elementos de cada par.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to find the // product of all the pairs from // the given array #include <bits/stdc++.h> using namespace std; #define mod 1000000007 // Function to return the product of // the elements of all possible pairs // from the array int productPairs(int arr[], int n) { // To store the required product int product = 1; // Nested loop to calculate all // possible pairs for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { // Multiply the product of // the elements of the // current pair product *= (arr[i] % mod * arr[j] % mod) % mod; product = product % mod; } } // Return the final result return product % mod; } // Driver code int main() { int arr[] = { 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << productPairs(arr, n); return 0; }
Java
// Java implementation to find the // product of all the pairs from // the given array import java.util.*; class GFG{ static final int mod = 1000000007; // Function to return the product of // the elements of all possible pairs // from the array static int productPairs(int arr[], int n) { // To store the required product int product = 1; // Nested loop to calculate all // possible pairs for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { // Multiply the product // of the elements of the // current pair product *= (arr[i] % mod * arr[j] % mod) % mod; product = product % mod; } } // Return the final result return product % mod; } // Driver code public static void main(String[] args) { int arr[] = { 1, 2, 3 }; int n = arr.length; System.out.print(productPairs(arr, n)); } } // This code is contributed by sapnasingh4991
Python3
# Python3 implementation to find the # product of all the pairs from # the given array mod = 1000000007; # Function to return the product of # the elements of all possible pairs # from the array def productPairs(arr, n): # To store the required product product = 1; # Nested loop to calculate all # possible pairs for i in range(n): for j in range(n): # Multiply the product # of the elements of the # current pair product *= (arr[i] % mod * arr[j] % mod) % mod; product = product % mod; # Return the final result return product % mod; # Driver code if __name__ == '__main__': arr = [1, 2, 3]; n = len(arr); print(productPairs(arr, n)); # This code is contributed by 29AjayKumar
C#
// C# implementation to find the // product of all the pairs from // the given array using System; class GFG{ static readonly int mod = 1000000007; // Function to return the product of // the elements of all possible pairs // from the array static int productPairs(int []arr, int n) { // To store the required product int product = 1; // Nested loop to calculate all // possible pairs for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { // Multiply the product // of the elements of the // current pair product *= (arr[i] % mod * arr[j] % mod) % mod; product = product % mod; } } // Return the readonly result return product % mod; } // Driver code public static void Main(String[] args) { int []arr = { 1, 2, 3 }; int n = arr.Length; Console.Write(productPairs(arr, n)); } } // This code is contributed by sapnasingh4991
Javascript
<script> //Javascript implementation to find the // product of all the pairs from // the given array mod = 1000000007 // Function to return the product of // the elements of all possible pairs // from the array function productPairs(arr, n) { // To store the required product let product = 1; // Nested loop to calculate all // possible pairs for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { // Multiply the product of // the elements of the // current pair product *= (arr[i] % mod * arr[j] % mod) % mod; product = product % mod; } } // Return the final result return product % mod; } // Driver code let arr = [ 1, 2, 3 ]; let n = arr.length; document.write(productPairs(arr, n)); // This code is contributed by Mayank Tyagi </script>
46656
Complejidad del tiempo: O(N 2 )
Enfoque eficiente: podemos observar que cada elemento aparece exactamente (2 * N) veces como uno de los elementos de un par (X, Y) . Exactamente N veces como X y exactamente N veces como Y .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to Find the product // of all the pairs from the given array #include <bits/stdc++.h> using namespace std; #define mod 1000000007 #define ll long long int // Function to calculate // (x^y)%1000000007 int power(int x, unsigned int y) { int p = 1000000007; // Initialize result int res = 1; // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } // Return the final result return res; } // Function to return the product // of the elements of all possible // pairs from the array ll productPairs(ll arr[], ll n) { // To store the required product ll product = 1; // Iterate for every element // of the array for (int i = 0; i < n; i++) { // Each element appears (2 * n) times product = (product % mod * (int)power( arr[i], (2 * n)) % mod) % mod; } return product % mod; } // Driver code int main() { ll arr[] = { 1, 2, 3 }; ll n = sizeof(arr) / sizeof(arr[0]); cout << productPairs(arr, n); return 0; }
Java
// Java implementation to Find the product // of all the pairs from the given array import java.util.*; class GFG{ static final int mod = 1000000007; // Function to calculate // (x^y)%1000000007 static int power(int x, int y) { int p = 1000000007; // Initialize result int res = 1; // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } // Return the final result return res; } // Function to return the product // of the elements of all possible // pairs from the array static int productPairs(int arr[], int n) { // To store the required product int product = 1; // Iterate for every element // of the array for (int i = 0; i < n; i++) { // Each element appears (2 * n) times product = (product % mod * (int)power(arr[i], (2 * n)) % mod) % mod; } return product % mod; } // Driver code public static void main(String[] args) { int arr[] = { 1, 2, 3 }; int n = arr.length; System.out.print(productPairs(arr, n)); } } // This code is contributed by amal kumar choubey
Python3
# Python3 implementation to Find the product # of all the pairs from the given array mod = 1000000007 # Function to calculate # (x^y)%1000000007 def power(x, y): p = 1000000007 # Initialize result res = 1 # Update x if it is more than # or equal to p x = x % p while (y > 0): # If y is odd, multiply x # with result if ((y & 1) != 0): res = (res * x) % p y = y >> 1 x = (x * x) % p # Return the final result return res # Function to return the product # of the elements of all possible # pairs from the array def productPairs(arr, n): # To store the required product product = 1 # Iterate for every element # of the array for i in range(n): # Each element appears (2 * n) times product = (product % mod * (int)(power(arr[i], (2 * n))) % mod) % mod return (product % mod) # Driver code arr = [ 1, 2, 3 ] n = len(arr) print(productPairs(arr, n)) # This code is contributed by divyeshrabadiya07
C#
// C# implementation to Find the product // of all the pairs from the given array using System; class GFG{ const int mod = 1000000007; // Function to calculate // (x^y)%1000000007 static int power(int x, int y) { int p = 1000000007; // Initialize result int res = 1; // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } // Return the final result return res; } // Function to return the product // of the elements of all possible // pairs from the array static int productPairs(int []arr, int n) { // To store the required product int product = 1; // Iterate for every element // of the array for (int i = 0; i < n; i++) { // Each element appears (2 * n) times product = (product % mod * (int)power(arr[i], (2 * n)) % mod) % mod; } return product % mod; } // Driver code public static void Main() { int []arr = { 1, 2, 3 }; int n = arr.Length; Console.Write(productPairs(arr, n)); } } // This code is contributed by Code_Mech
Javascript
<script> // Javascript implementation to Find the product // of all the pairs from the given array let mod = 1000000007; // Function to calculate // (x^y)%1000000007 function power(x, y) { let p = 1000000007; // Initialize result let res = 1; // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } // Return the final result return res; } // Function to return the product // of the elements of all possible // pairs from the array function productPairs(arr, n) { // To store the required product let product = 1; // Iterate for every element // of the array for (let i = 0; i < n; i++) { // Each element appears (2 * n) times product = (product % mod * power(arr[i], (2 * n)) % mod) % mod; } return product % mod; } // Driver Code let arr = [ 1, 2, 3 ]; let n = arr.length; document.write(productPairs(arr, n)); </script>
46656
Complejidad de tiempo: O(N)