Verifique si la array se puede ordenar usando intercambios entre índices dados solamente

Dada una array arr[] de tamaño N que consta de distintos enteros del rango [0, N – 1] dispuestos en orden aleatorio. También se dan algunos pares donde cada par denota los índices donde se pueden intercambiar los elementos de la array. No hay límite en el número de intercambios permitidos. La tarea es encontrar si es posible organizar la array en orden ascendente utilizando estos intercambios. Si es posible , imprima Sí; de lo contrario, imprima No.
Ejemplos: 
 

Entrada: arr[] = {0, 4, 3, 2, 1, 5}, pairs[][] = {{1, 4}, {2, 3}} Salida: Sí swap(arr[1 
]
arr [4]) -> array[] = {0, 1, 3, 2, 4, 5} 
swap(array[2], array[3]) -> array[] = {0, 1, 2, 3, 4, 5}
Entrada: arr[] = {1, 2, 3, 0, 4}, pairs[][] = {{2, 3}} 
Salida: No 
 

Enfoque: el problema dado se puede considerar como un problema gráfico donde N denota el número total de Nodes en el gráfico y cada par de intercambio denota un borde no dirigido en el gráfico. Tenemos que averiguar si es posible convertir la array de entrada en la forma de {0, 1, 2, 3, …, N – 1}
Llamemos a la array anterior como B. Ahora descubra todos los componentes conectados de ambas arrays y si los elementos difieren en al menos un componente, entonces la respuesta es No ; de lo contrario, la respuesta es .
A continuación se muestra la implementación del enfoque anterior: 
 

CPP

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if the array elements
// can be sorted with the given operation
bool canBeSorted(int N, vector<int> a, int P,
vector<pair<int, int> > vp)
{
 
    // To create the adjacency list of the graph
    vector<int> v[N];
 
    // Boolean array to mark the visited nodes
    bool vis[N] = { false };
 
    // Creating adjacency list for undirected graph
    for (int i = 0; i < P; i++) {
        v[vp[i].first].push_back(vp[i].second);
        v[vp[i].second].push_back(vp[i].first);
    }
 
    for (int i = 0; i < N; i++) {
 
        // If not already visited
        // then apply BFS
        if (!vis[i]) {
            queue<int> q;
            vector<int> v1;
            vector<int> v2;
 
            // Set visited to true
            vis[i] = true;
 
            // Push the node to the queue
            q.push(i);
 
            // While queue is not empty
            while (!q.empty()) {
                int u = q.front();
                v1.push_back(u);
                v2.push_back(a[u]);
                q.pop();
 
                // Check all the adjacent nodes
                for (auto s : v[u]) {
 
                    // If not visited
                    if (!vis[s]) {
 
                        // Set visited to true
                        vis[s] = true;
                        q.push(s);
                    }
                }
            }
            sort(v1.begin(), v1.end());
            sort(v2.begin(), v2.end());
 
            // If the connected component does not
            // contain same elements then return false
            if (v1 != v2)
                return false;
        }
    }
    return true;
}
 
// Driver code
int main()
{
    vector<int> a = { 0, 4, 3, 2, 1, 5 };
    int n = a.size();
    vector<pair<int, int> > vp = { { 1, 4 }, { 2, 3 } };
    int p = vp.size();
 
    if (canBeSorted(n, a, p, vp))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java

// Java implementation of the approach
import java.io.*;
import java.util.*;
class GFG
{
   
  // Function that returns true if the array elements
  // can be sorted with the given operation
  static boolean canBeSorted(int N, ArrayList<Integer> a,
                             int p, ArrayList<ArrayList<Integer>> vp)
  {
     
    // To create the adjacency list of the graph
    ArrayList<ArrayList<Integer>> v = new ArrayList<ArrayList<Integer>>();
    for(int i = 0; i < N; i++)
    {
      v.add(new ArrayList<Integer>());
    }
     
    // Boolean array to mark the visited nodes
    boolean[] vis = new boolean[N];
 
    // Creating adjacency list for undirected graph
    for (int i = 0; i < p; i++)
    {
      v.get(vp.get(i).get(0)).add(vp.get(i).get(1));
      v.get(vp.get(i).get(1)).add(vp.get(i).get(0));
    }
    for (int i = 0; i < N; i++)
    {
       
      // If not already visited
      // then apply BFS
      if (!vis[i])
      {
        Queue<Integer> q = new LinkedList<>();
        ArrayList<Integer> v1 = new ArrayList<Integer>();
        ArrayList<Integer> v2 = new ArrayList<Integer>();
 
        // Set visited to true    
        vis[i] = true;
 
        // Push the node to the queue
        q.add(i);
 
        // While queue is not empty
        while (q.size() > 0)
        {
          int u = q.poll();
          v1.add(u);
          v2.add(a.get(u));
 
          // Check all the adjacent nodes
          for(int s: v.get(u))
          {
             
            // If not visited
            if (!vis[s])
            {
               
              // Set visited to true
              vis[s] = true;
              q.add(s);
            }
          }
 
        }
        Collections.sort(v1);
        Collections.sort(v2);
 
        // If the connected component does not
        // contain same elements then return false
        if(!v1.equals(v2))
        {
          return false;
        }
      }
    }
    return true;
  }
 
  // Driver code
  public static void main (String[] args)
  {
    ArrayList<Integer> a = new ArrayList<Integer>(Arrays.asList(0, 4, 3, 2, 1, 5));
    int n = a.size();
    ArrayList<ArrayList<Integer>> vp = new ArrayList<ArrayList<Integer>>();
    vp.add(new ArrayList<Integer>(Arrays.asList(1, 4)));
    vp.add(new ArrayList<Integer>(Arrays.asList(2, 3)));
    int p = vp.size();
    if (canBeSorted(n, a, p, vp))
    {
      System.out.println("Yes");   
    }
    else
    {
      System.out.println("No");
    }
 
  }
}
 
// This code is contributed by avanitrachhadiya2155

Python3

# Python3 implementation of the approach
from collections import deque as queue
 
# Function that returns true if the array elements
# can be sorted with the given operation
def canBeSorted(N, a, P, vp):
 
    # To create the adjacency list of the graph
    v = [[] for i in range(N)]
 
    # Boolean array to mark the visited nodes
    vis = [False]*N
 
    # Creating adjacency list for undirected graph
    for i in range(P):
        v[vp[i][0]].append(vp[i][1])
        v[vp[i][1]].append(vp[i][0])
 
    for i in range(N):
 
        # If not already visited
        # then apply BFS
        if (not vis[i]):
            q = queue()
            v1 = []
            v2 = []
 
            # Set visited to true
            vis[i] = True
 
            # Push the node to the queue
            q.append(i)
 
            # While queue is not empty
            while (len(q) > 0):
                u = q.popleft()
                v1.append(u)
                v2.append(a[u])
 
                # Check all the adjacent nodes
                for s in v[u]:
 
                    # If not visited
                    if (not vis[s]):
 
                        # Set visited to true
                        vis[s] = True
                        q.append(s)
 
            v1 = sorted(v1)
            v2 = sorted(v2)
 
            # If the connected component does not
            # contain same elements then return false
            if (v1 != v2):
                return False
    return True
 
# Driver code
if __name__ == '__main__':
    a = [0, 4, 3, 2, 1, 5]
    n = len(a)
    vp = [ [ 1, 4 ], [ 2, 3 ] ]
    p = len(vp)
 
    if (canBeSorted(n, a, p, vp)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by mohit kumar 29

Javascript

<script>
 
// Javascript implementation of the approach
     
    // Function that returns true if the array elements
   // can be sorted with the given operation
    function canBeSorted(N,a,p,vp)
    {
        // To create the adjacency list of the graph
    let v= [];
    for(let i = 0; i < N; i++)
    {
      v.push([]);
    }
      
    // Boolean array to mark the visited nodes
    let vis = new Array(N);
  
    // Creating adjacency list for undirected graph
    for (let i = 0; i < p; i++)
    {
      v[vp[i][0]].push(vp[i][1]);
      v[vp[i][1]].push(vp[i][0]);
    }
    for (let i = 0; i < N; i++)
    {
        
      // If not already visited
      // then apply BFS
      if (!vis[i])
      {
        let q = [];
        let v1 = [];
        let v2 = [];
  
        // Set visited to true   
        vis[i] = true;
  
        // Push the node to the queue
        q.push(i);
  
        // While queue is not empty
        while (q.length > 0)
        {
          let u = q.shift();
          v1.push(u);
          v2.push(a[u]);
  
          // Check all the adjacent nodes
          for(let s=0;s<v[u].length;s++)
          {
              
            // If not visited
            if (!vis[v[u][s]])
            {
                
              // Set visited to true
              vis[v[u][s]] = true;
              q.push(v[u][s]);
            }
          }
  
        }
        v1.sort(function(c,d){return c-d;});
        v2.sort(function(c,d){return c-d;});
  
        // If the connected component does not
        // contain same elements then return false
        if(v1.toString()!=(v2).toString())
        {
          return false;
        }
      }
    }
    return true;
    }
     
    // Driver code
    let a = [0, 4, 3, 2, 1, 5];
    let n = a.length;
    let vp = [];
    vp.push([1, 4]);
    vp.push([2, 3]);
    let p = vp.length;
    if (canBeSorted(n, a, p, vp))
    {
      document.write("Yes");  
    }
    else
    {
      document.write("No");
    }
 
 
// This code is contributed by unknown2108
 
</script>
Producción: 

Yes

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por Azad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *