Dados dos enteros L y R que denotan un rango, la tarea es encontrar el mayor conjunto de enteros coprimos en el rango L a R.
Ejemplos:
Entrada: L = 10, R = 25
Salida: 10 11 13 17 19 21 23
Entrada: L = 45, R = 57
Salida: 45 46 47 49 53
Enfoque: La idea es iterar de L a R y tratar de colocar el número entero en un conjunto tal que el Máximo común divisor del conjunto siga siendo 1. Esto se puede hacer almacenando el MCM del conjunto y cada vez antes de agregar el elemento en el conjunto, verifique que el MCD del número con MCM del conjunto siga siendo 1. Finalmente, encuentre el conjunto más grande de los enteros.
Por ejemplo:
Let L = 10, R = 14 Element 10: // Co-prime Sets S = {{10}}, LCM of Co-prime sets A = {10} Element 11: // Element 11 can be added to // the first set S = {{10, 11}} A = {110} Element 12: S = {{10, 11}, {12}} A = {110, 12} Element 13: S = {{10, 11, 13}, {12}} A = {1430, 12} Element 14: S = {{10, 11, 13}, {12}, {14}} A = {1430, 12, 14}
C++
// C++ implementation to find // the largest co-prime set in a // given range #include <bits/stdc++.h> using namespace std; // Function to find the largest // co-prime set of the integers void findCoPrime(int n, int m) { // Initialize sets // with starting integers vector<int> a = { n }; vector<vector<int> > b = { a }; // Iterate over all the possible // values of the integers for (int i = n + 1; i <= m; i++) { // lcm of each set in array // 'b' stored in set 'a' // so go through set 'a' for (int j = 0; j < a.size(); j++) { // if there gcd is 1 then // element add in that // array corresponding to b if (__gcd(i, a[j]) == 1) { // update the new lcm value int q = (i * a[j]) / __gcd(i, a[j]); b[j].push_back(i); a[j] = q; } } a.push_back(i); b.push_back({ i }); } vector<int> maxi = {}; for (int i = 0; i < b.size(); i++) { if (b[i].size() > maxi.size()) { maxi = b[i]; } } for (auto i = maxi.begin(); i != maxi.end(); i++) { cout << *i << " "; } cout << endl; } // Driver Code int main() { int n = 10; int m = 14; findCoPrime(n, m); return 0; } // This code is contributed by rj13to.
Python
# Python implementation to find # the largest co-prime set in a # given range import math # Function to find the largest # co-prime set of the integers def findCoPrime(n, m): # Initialize sets # with starting integers a =[n] b =[[n]] # Iterate over all the possible # values of the integers for i in range(n + 1, m + 1): # lcm of each list in array # 'b' stored in list 'a' # so go through list 'a' for j in range(len(a)): # if there gcd is 1 then # element add in that # list corresponding to b if math.gcd(i, a[j])== 1: # update the new lcm value q =(i * a[j])//math.gcd(i, a[j]) r = b[j] r.append(i) b[j]= r a[j]= q else: a.append(i) b.append([i]) maxi = [] for i in b: if len(i) > len(maxi): maxi = i print(*maxi) # Driver Code if __name__ == "__main__": n = 10 m = 14 findCoPrime(n, m)
Producción:
10 11 13