Pregunta 1. Multiplica:
(i) 7/11 por 5/4
Solución:
7/11 × 5/4
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (7 × 5)/(11 × 4)
= 35/44
(ii) 5/7 por -3/4
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
=
= -15/28
(iii) -2/9 para el 5/11
Solución:
-2/9 × 5/11
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-2 × 5)/(9 × 11)
= -10/99
(iv) -3//17 por -5/-4
Solución:
-3/17 × 5/4
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-3 × 5)/(17 × 4)
= -15/68
(v) 9/-7 por 36/-11
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-)/(7 × 11)
= 324/77
(vi) -11/13 por -21/7
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= /(13 × 7)
= 231/91
(vii) -3/5 por -4/7
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= /(5 × 7)
= 12/35
(viii) -15/11 por 7
Solución:
-15/11×7/1
Multiplicar numerador con numerador de otro número racional y denominador con denominador
=(-15×7)/(11×1)
=-105/11
Pregunta 2. Multiplica
(i) -5/17 por 51/-60
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
=()/(17 × 60)
Factor común de 5 y 60
= 51/17 × 12
51 y 12 tienen 3 como factor común
= 17/17 × 4
= 1/4
(ii) -6/11 por -55/36
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= /(11 × 36)
Factor común de 6 y 36, 55 y 11
= 5/6
(iii) -8/25 por -5/16
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= /(25 × 16)
Factor común de 8 y 16, 5 y 25
= 1/5 × 2
= 1/10
(iv) 6/7 por -49/36
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
/(7 × 36)
Factor común de 6 y 36, 49 y 7
= -7/6
(v) 8/-9 por -7/-16
Solución:
-8/9 × 7/16
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-8 × 7)/(9 × 16)
Factor común de 8 y 16
= -7/9 × 2
= -7/18
(vi) -8/9 por 3/64
Solución:
-8/9 × 3/64
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-8 × 3)/(9 × 64)
Factor común de 8 y 64, 3 y 9
= -1/3 × 8
= -1/24
Pregunta 3. Simplifique cada uno de los siguientes y exprese el resultado como un número racional en forma estándar:
(yo) (-16/21) × (14/5)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-16 × 14)/(21 × 5)
Factor común de 21 y 14
= (-16 × 2)/(3 × 5)
= -32/15
(ii) (7/6) × (-3/28)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (7 -3)/(6 × 28)
Factor común de 7, 28, 3 y 6
= -1/2 × 4
= -1/8
(iii) (-19/36) × 16
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-19 × 16)/(36 × 1)
Factor común de 16 y 36
= (-19×4)/(9×1)
=-76/9
(iv) (-13/9) × (27/-26)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
=(-13-27)/(9×26)
Factor común de 27 y 9 , 13 y 26
=(-1 -3)/(2)
=3/2
(v) (-9/16) × (-64/-27)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-9 × 64) / (16 × 27)
Factor común de 9 y 27, 64 y 16
= (-1 × 4) / (1 × 3)
= -4/3
(vi) (-50/7) × (14/3)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-50 × 14)/(7 × 3)
Factor común de 14 y 7
= (-50 × 2)/(3)
= -100/3
(vii) (-11/9) × (-81/-88)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-11 × 81)/(9 × 88)
Factor común de 1, 88, 9 y 81
= (-1 × 9)/(1 × 8)
= -9/8
(viii) (-5/9) × (72/-25)
Solución:
Multiplicar numerador con numerador de otro número racional y denominador con denominador
= (-5 * -72)/(9 × 25)
Factor común de 5 y 25, 9 y 72
= (-1 × -8)/(1 × 5)
= 8/5
4. Simplifica:
(i) ((25/8) × (2/5)) – ((3/5) × (-10/9))
Solución:
= (
= 5/4 + 2/3
MCM de 4 y 3 es 12
= (5 × 3 + 2 × 4)/12
= (15 + 8)/12
= 23/12
(ii) ((1/2) × (1/4)) + ((1/2) × 6)
Solución:
= ((1 × 1)/(2 × 4)) + ((1 × 6)/(1 × 2))
= 1/8 + 3/1
MCM de 8 y 1 es 8
= (1 × 1 + 3 × 8)/8
= (1 + 24)/8
= 25/8
(iii) (-5 × (2/15)) – (-6 × (2/9))
Solución:
= ((-5 × 2)/(15 × 1)) – ((-6 × 2)/(1 × 9))
= (-10/15) – (-12/9)
Factor común de 10 y 15, 12 y 9
= -2/5 + 4/3
MCM de 5 y 3 es 15
= (-2 × 3 + 4 × 4)/15
= (-6 + 16)/15
= 10/15
Factor común de 10 y 15
= 2/3
(iv) ((-9/4) × (5/3)) + ((13/2) × (5/6))
Solución:
=
Factor común de 9 y 3
= (-45/12) + (65/12)
Como los denominadores son iguales
= (-45 + 65)/12
= (20)/12
Factor común de 20 y 12
= 5/3
(v) ((-4/3) × (12/-5)) + ((3/7) × (21/15))
Solución:
= 57/15
Factor común de 57 y 15
= 19/5
(vi) ((13/5) × (8/3)) – ((-5/2) × (11/3))
Solución:
= (13 × 8)/(5 × 3) – ((-5 × 11)/(2 × 3))
= 104/15 – 55/6
MCM de 15 y 6 es 3 × 5 × 2 = 30
= (104 × 2 + 55 × 5)/30
= (208 + 275)/30
= 483/30
(vii) ((13/7) × (11/26)) — ((-4/3) × (5/6))
Solución:
= ((13 × 11)/(7 × 26)) – ((-4 × 5)/(3 × 6))
Factor común de 13 y 26, 4 y 6
= 11/7 × 2 – (-2 × 5/3 × 3)
= 14/11 + 9/10
MCM de 14 y 9 es 126
= (11 × 9 + 10 × 14)/126
= (99 + 140)/126
= 239/126
Pregunta 5. Simplifica:
(i) ((3/2) × (1/6)) + ((5/3) × (7/2) – (13/8) × (4/3))
Solución:
= (3 × 1)/(2 × 6) + (5 × 7)/(3 × 2) – (13 × 4)/(8 × 3)
Factor común de 3 y 6, 4 y 8
= 1/4 + 35/6 – 13/6
MCM de 4 y 6 es 12
= (1 × 3 + 35 × 2 – 13 × 2)/12
= (3 + 70 – 26)/12
= (73 – 26)/12
= 47/12
(ii) ((1/4) × (2/7)) — (5/14) × (-2/3) + (3/7) × (9/2)
Solución:
= (1 × 2)/(4 × 7) – (5 × -2)/(14 × 3) + (3 × 9)/(7 × 2)
Factor común de 2 y 4, 2 y 14
= 1/14 – (-5/21) + 27/14
MCM de 21 y 14 es 7 × 2 × 3 = 42
= 1/14 + 5/21 + 27/14
MCM de 14 y 21 es 2 × 7 × 3 = 42
= (1 × 3 + 5 × 2 + 27 × 3)/42
= (3 + 10 + 81)/42
= (94)/42
(iii) ((13/9) × (-15/2)) + ((7/3) × (8/5) + (3/5) × (1/2))
Solución:
= (13 × -15)/(9 × 2) + ((7 × 8)/(3 × 5) + (3 × 1)/(5 × 2))
Factor común de 9 y 15
= (13 × -5)/(3 × 2) + ((56/15) + 3/10)
= -65/6 + 56/15 + 3/10
6 = 2 × 3
15 = 3 × 5
10 = 2 × 5
MCM es 2 × 3 × 5 = 30
= (-65 × 5 + 56 × 2 + 3 × 3)/30
= (-325 + 112 + 9)/30
= (-325 + 121)/30
= -204/30
(iv) ((3/11) × (5/6)) – (9/12) × (4/3) + (5/13) × (6/15)
Solución:
= (3 × 5)/(11 × 6) – ((9 × 4)/(12 × 3) + (5 × 6)/(13 × 15))
Factor común de 3 y 6, 9 y 12, 5 y 15
= 5/22 – 1/1 + 2/13
= 5/22 – 1/1 + 2/13
MCM de 22,1 y 13 es 286
= (5 × 13 – 286 + 2 × 22)/286
= (65 – 286 + 44)/286
= (65 – 330)/286
= -177/286
Publicación traducida automáticamente
Artículo escrito por kashika1145 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA