ML | Implementando la regularización L1 y L2 usando Sklearn

Requisitos previos: regularización L2 y L1
Este artículo tiene como objetivo implementar la regularización L2 y L1 para la regresión lineal utilizando los módulos Ridge y Lasso de la biblioteca Sklearn de Python. 
Conjunto de datos: conjunto de datos de precios de la vivienda .
Paso 1: Importación de las bibliotecas requeridas
 

Python3

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.model_selection import train_test_split, cross_val_score
from statistics import mean

Paso 2: Cargar y limpiar los datos
 

Python3

# Changing the working location to the location of the data
cd C:\Users\Dev\Desktop\Kaggle\House Prices
 
# Loading the data into a Pandas DataFrame
data = pd.read_csv('kc_house_data.csv')
 
# Dropping the numerically non-sensical variables
dropColumns = ['id', 'date', 'zipcode']
data = data.drop(dropColumns, axis = 1)
 
# Separating the dependent and independent variables
y = data['price']
X = data.drop('price', axis = 1)
 
# Dividing the data into training and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)

Paso 3: Construcción y evaluación de los diferentes modelos
a) Regresión lineal:
 

Python3

# Building and fitting the Linear Regression model
linearModel = LinearRegression()
linearModel.fit(X_train, y_train)
 
# Evaluating the Linear Regression model
print(linearModel.score(X_test, y_test))

b ) Regresión de la cresta (L2):
 

Python3

# List to maintain the different cross-validation scores
cross_val_scores_ridge = []
 
# List to maintain the different values of alpha
alpha = []
 
# Loop to compute the different values of cross-validation scores
for i in range(1, 9):
    ridgeModel = Ridge(alpha = i * 0.25)
    ridgeModel.fit(X_train, y_train)
    scores = cross_val_score(ridgeModel, X, y, cv = 10)
    avg_cross_val_score = mean(scores)*100
    cross_val_scores_ridge.append(avg_cross_val_score)
    alpha.append(i * 0.25)
 
# Loop to print the different values of cross-validation scores
for i in range(0, len(alpha)):
    print(str(alpha[i])+' : '+str(cross_val_scores_ridge[i]))

Del resultado anterior, podemos concluir que el mejor valor de alfa para los datos es 2.
 

Python3

# Building and fitting the Ridge Regression model
ridgeModelChosen = Ridge(alpha = 2)
ridgeModelChosen.fit(X_train, y_train)
 
# Evaluating the Ridge Regression model
print(ridgeModelChosen.score(X_test, y_test))

c ) Regresión Lasso(L1):
 

Python3

# List to maintain the cross-validation scores
cross_val_scores_lasso = []
 
# List to maintain the different values of Lambda
Lambda = []
 
# Loop to compute the cross-validation scores
for i in range(1, 9):
    lassoModel = Lasso(alpha = i * 0.25, tol = 0.0925)
    lassoModel.fit(X_train, y_train)
    scores = cross_val_score(lassoModel, X, y, cv = 10)
    avg_cross_val_score = mean(scores)*100
    cross_val_scores_lasso.append(avg_cross_val_score)
    Lambda.append(i * 0.25)
 
# Loop to print the different values of cross-validation scores
for i in range(0, len(alpha)):
    print(str(alpha[i])+' : '+str(cross_val_scores_lasso[i]))

Del resultado anterior, podemos concluir que el mejor valor de lambda es 2.
 

Python3

# Building and fitting the Lasso Regression Model
lassoModelChosen = Lasso(alpha = 2, tol = 0.0925)
lassoModelChosen.fit(X_train, y_train)
 
# Evaluating the Lasso Regression model
print(lassoModelChosen.score(X_test, y_test))

Paso 4: Comparar y visualizar los resultados
 

Python3

# Building the two lists for visualization
models = ['Linear Regression', 'Ridge Regression', 'Lasso Regression']
scores = [linearModel.score(X_test, y_test),
         ridgeModelChosen.score(X_test, y_test),
         lassoModelChosen.score(X_test, y_test)]
 
# Building the dictionary to compare the scores
mapping = {}
mapping['Linear Regression'] = linearModel.score(X_test, y_test)
mapping['Ridge Regression'] = ridgeModelChosen.score(X_test, y_test)
mapping['Lasso Regression'] = lassoModelChosen.score(X_test, y_test)
 
# Printing the scores for different models
for key, val in mapping.items():
    print(str(key)+' : '+str(val))

Python3

# Plotting the scores
plt.bar(models, scores)
plt.xlabel('Regression Models')
plt.ylabel('Score')
plt.show()

Publicación traducida automáticamente

Artículo escrito por AlindGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *