Dado un valor de ángulo, debe calcular los valores de Sin y Cos correspondientes a él.
Para la función sen
Ejemplos:
Input : 90 Output : 1
C++
// CPP code for implementing sin function #include <iostream> #include <math.h> using namespace std; // Function for calculating sin value void cal_sin(float n) { float accuracy = 0.0001, denominator, sinx, sinval; // Converting degrees to radian n = n * (3.142 / 180.0); float x1 = n; // maps the sum along the series sinx = n; // holds the actual value of sin(n) sinval = sin(n); int i = 1; do { denominator = 2 * i * (2 * i + 1); x1 = -x1 * n * n / denominator; sinx = sinx + x1; i = i + 1; } while (accuracy <= fabs(sinval - sinx)); cout << sinx; } // Main function int main() { float n = 90; cal_sin(n); return 0; }
Java
import static java.lang.Math.sin; // JAVA code for implementing sin function class GFG { // Function for calculating sin value static void cal_sin(float n) { float accuracy = (float) 0.0001, denominator, sinx, sinval; // Converting degrees to radian n = n * (float)(3.142 / 180.0); float x1 = n; // maps the sum along the series sinx = n; // holds the actual value of sin(n) sinval = (float)sin(n); int i = 1; do { denominator = 2 * i * (2 * i + 1); x1 = -x1 * n * n / denominator; sinx = sinx + x1; i = i + 1; } while (accuracy <= sinval - sinx); System.out.println(sinx); } // Main function public static void main(String[] args) { float n = 90; cal_sin(n); } }
Python3
# Python3 code for implementing # sin function import math; # Function for calculating sin value def cal_sin(n): accuracy = 0.0001; # Converting degrees to radian n = n * (3.142 / 180.0); x1 = n; # maps the sum along the series sinx = n; # holds the actual value of sin(n) sinval = math.sin(n); i = 1; while(True): denominator = 2 * i * (2 * i + 1); x1 = -x1 * n * n / denominator; sinx = sinx + x1; i = i + 1; if(accuracy <= abs(sinval - sinx)): break; print(round(sinx)); # Driver Code n = 90; cal_sin(n); # This code is contributed by mits
C#
// C# code for implementing sin function using System; class GFG { // Function for calculating sin value static void cal_sin(float n) { float accuracy = (float) 0.0001, denominator, sinx, sinval; // Converting degrees to radian n = n * (float)(3.142 / 180.0); float x1 = n; // maps the sum along the series sinx = n; // holds the actual value of sin(n) sinval = (float)Math.Sin(n); int i = 1; do { denominator = 2 * i * (2 * i + 1); x1 = -x1 * n * n / denominator; sinx = sinx + x1; i = i + 1; } while (accuracy <= sinval - sinx); Console.WriteLine(sinx); } // Driver Code static public void Main () { float n = 90; cal_sin(n); } } // This code is contributed by jit_t
PHP
<?php // PHP code for implementing sin function // Function for calculating sin value function cal_sin($n) { $accuracy = 0.0001; // Converting degrees to radian $n = $n * (3.142 / 180.0); $x1 = $n; // maps the sum along the series $sinx = $n; // holds the actual value of sin(n) $sinval = sin($n); $i = 1; do { $denominator = 2 * $i * (2 * $i + 1); $x1 = -$x1 * $n * $n / $denominator; $sinx = $sinx + $x1; $i = $i + 1; } while ($accuracy <= abs($sinval - $sinx)); echo round($sinx); } // Main function $n = 90; cal_sin($n); // This code is contributed by mits ?>
Javascript
<script> // javascript code for implementing sin function // Function for calculating sin value function cal_sin(n) { var accuracy = 0.0001, denominator, sinx, sinval; // Converting degrees to radian n = n * (3.142 / 180.0); var x1 = n; // maps the sum along the series sinx = n; // holds the actual value of sin(n) sinval = Math.sin(n); var i = 1; do { denominator = 2 * i * (2 * i + 1); x1 = -x1 * n * n / denominator; sinx = (sinx + x1); i = i + 1; } while (accuracy <= sinval - sinx); document.write(sinx.toFixed(0)); } // Main function var n = 90; cal_sin(n); // This code is contributed by todaysgaurav </script>
Producción:
1
Para función cos
Ejemplos:
Input : 30 Output : 0.86602
C++
// CPP code for implementing cos function #include <iostream> #include <math.h> using namespace std; // Function for calculation void cal_cos(float n) { float accuracy = 0.0001, x1, denominator, cosx, cosval; // Converting degrees to radian n = n * (3.142 / 180.0); x1 = 1; // maps the sum along the series cosx = x1; // holds the actual value of sin(n) cosval = cos(n); int i = 1; do { denominator = 2 * i * (2 * i - 1); x1 = -x1 * n * n / denominator; cosx = cosx + x1; i = i + 1; } while (accuracy <= fabs(cosval - cosx)); cout << cosx; } // Main function int main() { float n = 30; cal_cos(n); }
Java
// Java code for implementing cos function import static java.lang.Math.cos; class GFG { // Function for calculation static void cal_cos(float n) { float accuracy = (float) 0.0001, x1, denominator, cosx, cosval; // Converting degrees to radian n = n * (float) (3.142 / 180.0); x1 = 1; // maps the sum along the series cosx = x1; // holds the actual value of sin(n) cosval = (float) cos(n); int i = 1; do { denominator = 2 * i * (2 * i - 1); x1 = -x1 * n * n / denominator; cosx = cosx + x1; i = i + 1; } while (accuracy <= cosval - cosx); System.out.println(cosx); } // Main function public static void main(String[] args) { float n = 30; cal_cos(n); } }
Python3
# Python 3 code for implementing cos function from math import fabs, cos # Function for calculation def cal_cos(n): accuracy = 0.0001 # Converting degrees to radian n = n * (3.142 / 180.0) x1 = 1 # maps the sum along the series cosx = x1 # holds the actual value of sin(n) cosval = cos(n) i = 1 denominator = 2 * i * (2 * i - 1) x1 = -x1 * n * n / denominator cosx = cosx + x1 i = i + 1 while (accuracy <= fabs(cosval - cosx)): denominator = 2 * i * (2 * i - 1) x1 = -x1 * n * n / denominator cosx = cosx + x1 i = i + 1 print('{0:.6}'.format(cosx)) # Driver Code if __name__ == '__main__': n = 30 cal_cos(n) # This code is contributed by # Sahil_Shelangia
C#
// C# code for implementing cos function using System; class GFG { // Function for calculation static void cal_cos(float n) { float accuracy = (float) 0.0001, x1, denominator, cosx, cosval; // Converting degrees to radian n = n * (float) (3.142 / 180.0); x1 = 1; // maps the sum along the series cosx = x1; // holds the actual value of sin(n) cosval = (float) Math.Cos(n); int i = 1; do { denominator = 2 * i * (2 * i - 1); x1 = -x1 * n * n / denominator; cosx = cosx + x1; i = i + 1; } while (accuracy <= cosval - cosx); Console.WriteLine(cosx); } // Main function static void Main() { float n = 30; cal_cos(n); } } // This code is contributed by mits
PHP
<?php // PHP code for implementing cos function // Function for calculation function cal_cos($n) { $accuracy = 0.0001; // Converting degrees to radian $n = $n * (3.142 / 180.0); $x1 = 1; // maps the sum along the series $cosx = $x1; // holds the actual value of sin(n) $cosval = cos($n); $i = 1; do { $denominator = 2 * $i * (2 * $i - 1); $x1 = -$x1 * $n * $n / $denominator; $cosx = $cosx + $x1; $i = $i + 1; } while ($accuracy <= abs($cosval - $cosx)); echo round($cosx, 6); } // Driver Code $n = 30; cal_cos($n); // This code is contributed by mits ?>
Javascript
<script> // JavaScript code for implementing cos function // Function for calculation function cal_cos(n) { let accuracy = 0.0001, x1, denominator, cosx, cosval; // Converting degrees to radian n = n * (3.142 / 180.0); x1 = 1; // maps the sum along the series cosx = x1; // holds the actual value of sin(n) cosval = Math.cos(n); let i = 1; do { denominator = 2 * i * (2 * i - 1); x1 = -x1 * n * n / denominator; cosx = cosx + x1; i = i + 1; } while (accuracy <= Math.abs(cosval - cosx)); document.write(cosx.toFixed(5)); } // Main function let n = 30; cal_cos(n); // This code is contributed by Surbhi Tyagi. </script>
Producción:
0.86602
Este artículo es una contribución de Sakshi Tiwari . Si te gusta GeeksforGeeks (¡sabemos que te gusta!) y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA