primos palindrómicos

Un primo palindrómico (a veces llamado palprimo ) es un número primo que también es un número palindrómico. 
Dado un número n, imprima todos los primos palindrómicos menores o iguales que n. Por ejemplo, si n es 10, la salida debería ser “2, 3, 5, 7′. Y si n es 20, la salida debería ser “2, 3, 5, 7, 11′.
La idea es generar todos los números primos menores o iguales que el número n dado y verificar cada número primo si es palindrómico o no.
Métodos utilizados

A continuación se muestra la implementación del algoritmo anterior: 
 

C++

// C++ Program to print all palindromic primes
// smaller than or equal to n.
#include<bits/stdc++.h>
using namespace std;
 
// A function that returns true only if num
// contains one digit
int oneDigit(int num)
{
    // comparison operation is faster than
    // division operation. So using following
    // instead of "return num / 10 == 0;"
    return (num >= 0 && num < 10);
}
 
// A recursive function to find out whether
// num is palindrome or not. Initially, dupNum
// contains address of a copy of num.
bool isPalUtil(int num, int* dupNum)
{
    // Base case (needed for recursion termination):
    // This statement/ mainly compares the first
    // digit with the last digit
    if (oneDigit(num))
        return (num == (*dupNum) % 10);
 
    // This is the key line in this method. Note
    // that all recursive/ calls have a separate
    // copy of num, but they all share same copy
    // of *dupNum. We divide num while moving up
    // the recursion tree
    if (!isPalUtil(num/10, dupNum))
        return false;
 
    // The following statements are executed when
    // we move up the recursion call tree
    *dupNum /= 10;
 
    // At this point, if num%10 contains i'th
    // digit from beginning, then (*dupNum)%10
    // contains i'th digit from end
    return (num % 10 == (*dupNum) % 10);
}
 
// The main function that uses recursive function
// isPalUtil() to find out whether num is palindrome
// or not
int isPal(int num)
{
    // If num is negative, make it positive
    if (num < 0)
       num = -num;
 
    // Create a separate copy of num, so that
    // modifications made to address dupNum don't
    // change the input number.
    int *dupNum = new int(num); // *dupNum = num
 
    return isPalUtil(num, dupNum);
}
 
// Function to generate all primes and checking
// whether number is palindromic or not
void printPalPrimesLessThanN(int n)
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true. A value
    // in prime[i] will finally be false if i is
    // Not a prime, else true.
    bool prime[n+1];
    memset(prime, true, sizeof(prime));
 
    for (int p=2; p*p<=n; p++)
    {
        // If prime[p] is not changed, then it is
        // a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            for (int i=p*2; i<=n; i += p)
                prime[i] = false;
        }
    }
 
    // Print all palindromic prime numbers
    for (int p=2; p<=n; p++)
 
       // checking whether the given number is
       // prime palindromic or not
       if (prime[p] && isPal(p))
          cout << p << " ";
}
 
// Driver Program
int main()
{
    int n = 100;
    printf("Palindromic primes smaller than or "
           "equal to %d are :\n", n);
    printPalPrimesLessThanN(n);
}

Java

// Java Program to print all palindromic primes
// smaller than or equal to n.
import java.util.*;
 
class GFG {
     
    // A function that returns true only if num
    // contains one digit
    static boolean oneDigit(int num)
    {
        // comparison operation is faster than
        // division operation. So using following
        // instead of "return num / 10 == 0;"
        return (num >= 0 && num < 10);
    }
      
    // A recursive function to find out whether
    // num is palindrome or not. Initially, dupNum
    // contains address of a copy of num.
    static boolean isPalUtil(int num, int dupNum)
    {
        // Base case (needed for recursion termination):
        // This statement/ mainly compares the first
        // digit with the last digit
        if (oneDigit(num))
            return (num == (dupNum) % 10);
      
        // This is the key line in this method. Note
        // that all recursive/ calls have a separate
        // copy of num, but they all share same copy
        // of dupNum. We divide num while moving up
        // the recursion tree
        if (!isPalUtil(num/10, dupNum))
            return false;
      
        // The following statements are executed when
        // we move up the recursion call tree
        dupNum /= 10;
      
        // At this point, if num%10 contains ith
        // digit from beginning, then (dupNum)%10
        // contains ith digit from end
        return (num % 10 == (dupNum) % 10);
    }
      
    // The main function that uses recursive function
    // isPalUtil() to find out whether num is palindrome
    // or not
    static boolean isPal(int num)
    {
        // If num is negative, make it positive
        if (num < 0)
           num = -num;
      
        // Create a separate copy of num, so that
        // modifications made to address dupNum don't
        // change the input number.
        int dupNum = num; // dupNum = num
      
        return isPalUtil(num, dupNum);
    }
      
    // Function to generate all primes and checking
    // whether number is palindromic or not
    static void printPalPrimesLessThanN(int n)
    {
        // Create a boolean array "prime[0..n]" and
        // initialize all entries it as true. A value
        // in prime[i] will finally be false if i is
        // Not a prime, else true.
        boolean prime[] = new boolean[n+1];
      
        Arrays.fill(prime, true);
         
        for (int p = 2; p*p <= n; p++)
        {
            // If prime[p] is not changed, then it is
            // a prime
            if (prime[p])
            {
                // Update all multiples of p
                for (int i = p*2; i <= n; i += p){
                    prime[i] = false;}
            }
        }
      
        // Print all palindromic prime numbers
        for (int p = 2; p <= n; p++){
      
           // checking whether the given number is
           // prime palindromic or not
           if (prime[p] && isPal(p)){
              System.out.print(p + " ");
              }
           }
    }
     
    // Driver function
    public static void main(String[] args)
    {
         int n = 100;
            System.out.printf("Palindromic primes smaller than or "
                   +"equal to %d are :\n", n);
            printPalPrimesLessThanN(n);
        }
    }
         
// This code is contributed by Arnav Kr. Mandal.

Python3

# Python3 Program to print all palindromic
# primes smaller than or equal to n.
     
# A function that returns true only if
# num contains one digit
def oneDigit(num):
     
    # comparison operation is faster than
    # division operation. So using following
    # instead of "return num / 10 == 0;"
    return (num >= 0 and num < 10);
     
# A recursive function to find out whether
# num is palindrome or not. Initially, dupNum
# contains address of a copy of num.
def isPalUtil(num, dupNum):
     
    # Base case (needed for recursion termination):
    # This statement/ mainly compares the first
    # digit with the last digit
    if (oneDigit(num)):
        return (num == (dupNum) % 10);
     
    # This is the key line in this method. Note
    # that all recursive/ calls have a separate
    # copy of num, but they all share same copy
    # of dupNum. We divide num while moving up
    # the recursion tree
    if (not isPalUtil(int(num / 10), dupNum)):
        return False;
     
    # The following statements are executed
    # when we move up the recursion call tree
    dupNum =int(dupNum/10);
     
    # At this point, if num%10 contains ith
    # digit from beginning, then (dupNum)%10
    # contains ith digit from end
    return (num % 10 == (dupNum) % 10);
     
# The main function that uses recursive
# function isPalUtil() to find out whether
# num is palindrome or not
def isPal(num):
     
    # If num is negative, make it positive
    if (num < 0):
        num = -num;
     
    # Create a separate copy of num, so that
    # modifications made to address dupNum
    # don't change the input number.
    dupNum = num; # dupNum = num
     
    return isPalUtil(num, dupNum);
     
# Function to generate all primes and checking
# whether number is palindromic or not
def printPalPrimesLessThanN(n):
     
    # Create a boolean array "prime[0..n]" and
    # initialize all entries it as true. A value
    # in prime[i] will finally be false if i is
    # Not a prime, else true.
    prime = [True] * (n + 1);
    p = 2;
    while (p * p <= n):
         
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p]):
             
            # Update all multiples of p
            for i in range(p * 2, n + 1, p):
                prime[i] = False;
        p += 1;
         
    # Print all palindromic prime numbers
    for p in range(2, n + 1):
         
        # checking whether the given number
        # is prime palindromic or not
        if (prime[p] and isPal(p)):
            print(p, end = " ");
     
# Driver Code
n = 100;
print("Palindromic primes smaller",
      "than or equal to", n, "are :");
printPalPrimesLessThanN(n);
 
# This code is contributed by chandan_jnu

C#

// C# Program to print all palindromic
// primes smaller than or equal to n.
using System;
 
class GFG {
     
    // A function that returns true only
    // if num contains one digit
    static bool oneDigit(int num)
    {
        // comparison operation is faster than
        // division operation. So using following
        // instead of "return num / 10 == 0;"
        return (num >= 0 && num < 10);
    }
     
    // A recursive function to find out whether
    // num is palindrome or not. Initially, dupNum
    // contains address of a copy of num.
    static bool isPalUtil(int num, int dupNum)
    {
        // Base case (needed for recursion termination):
        // This statement/ mainly compares the first
        // digit with the last digit
        if (oneDigit(num))
            return (num == (dupNum) % 10);
     
        // This is the key line in this method. Note
        // that all recursive/ calls have a separate
        // copy of num, but they all share same copy
        // of dupNum. We divide num while moving up
        // the recursion tree
        if (!isPalUtil(num/10, dupNum))
            return false;
     
        // The following statements are executed when
        // we move up the recursion call tree
        dupNum /= 10;
     
        // At this point, if num%10 contains ith
        // digit from beginning, then (dupNum)%10
        // contains ith digit from end
        return (num % 10 == (dupNum) % 10);
    }
     
    // The main function that uses recursive
    // function isPalUtil() to find out
    // whether num is palindrome or not
    static bool isPal(int num)
    {
        // If num is negative, make it positive
        if (num < 0)
        num = -num;
     
        // Create a separate copy of num, so that
        // modifications made to address dupNum don't
        // change the input number.
        int dupNum = num; // dupNum = num
     
        return isPalUtil(num, dupNum);
    }
     
    // Function to generate all primes and checking
    // whether number is palindromic or not
    static void printPalPrimesLessThanN(int n)
    {
        // Create a boolean array "prime[0..n]" and
        // initialize all entries it as true. A value
        // in prime[i] will finally be false if i is
        // Not a prime, else true.
        bool []prime = new bool[n+1];
         
    for (int i=0;i<n+1;i++)
    prime[i]=true;
         
        for (int p = 2; p*p <= n; p++)
        {
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
                // Update all multiples of p
                for (int i = p*2; i <= n; i += p){
                    prime[i] = false;}
            }
        }
     
        // Print all palindromic prime numbers
        for (int p = 2; p <= n; p++){
     
        // checking whether the given number is
        // prime palindromic or not
        if (prime[p] && isPal(p)){
            Console.Write(p + " ");
            }
        }
    }
     
    // Driver function
    public static void Main()
    {
        int n = 100;
        Console.Write("Palindromic primes smaller than or " +
                      "equal to are :\n", n);
        printPalPrimesLessThanN(n);
    }
}
         
// This code is contributed by nitin mittal.

PHP

<?php
// PHP Program to print all palindromic
// primes smaller than or equal to n.
     
// A function that returns true only
// if num contains one digit
function oneDigit($num)
{
    // comparison operation is faster than
    // division operation. So using following
    // instead of "return num / 10 == 0;"
    return ($num >= 0 && $num < 10);
}
 
// A recursive function to find out whether
// num is palindrome or not. Initially,
// dupNum contains address of a copy of num.
function isPalUtil($num, $dupNum)
{
    // Base case (needed for recursion termination):
    // This statement/ mainly compares the first
    // digit with the last digit
    if (oneDigit($num))
        return ($num == ($dupNum) % 10);
 
    // This is the key line in this method. Note
    // that all recursive/ calls have a separate
    // copy of num, but they all share same copy
    // of dupNum. We divide num while moving up
    // the recursion tree
    if (!isPalUtil((int)($num/10), $dupNum))
        return false;
 
    // The following statements are executed 
    // when we move up the recursion call tree
    $dupNum = (int)($dupNum / 10);
 
    // At this point, if num%10 contains ith
    // digit from beginning, then (dupNum)%10
    // contains ith digit from end
    return ($num % 10 == ($dupNum) % 10);
}
 
// The main function that uses recursive
// function isPalUtil() to find out whether
// num is palindrome or not
function isPal($num)
{
    // If num is negative, make it positive
    if ($num < 0)
    $num = -$num;
 
    // Create a separate copy of num, so that
    // modifications made to address dupNum
    // don't change the input number.
    $dupNum = $num; // dupNum = num
 
    return isPalUtil($num, $dupNum);
}
 
// Function to generate all primes and checking
// whether number is palindromic or not
function printPalPrimesLessThanN($n)
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true. A value
    // in prime[i] will finally be false if i is
    // Not a prime, else true.
    $prime = array_fill(0, $n + 1, true);
     
    for ($p = 2; $p * $p <= $n; $p++)
    {
        // If prime[p] is not changed, then
        // it is a prime
        if ($prime[$p])
        {
            // Update all multiples of p
            for ($i = $p * 2; $i <= $n; $i += $p)
            {
                $prime[$i] = false;
            }
        }
    }
 
    // Print all palindromic prime numbers
    for ($p = 2; $p <= $n; $p++)
    {
 
    // checking whether the given number 
    // is prime palindromic or not
    if ($prime[$p] && isPal($p))
    {
        print($p . " ");
    }
    }
}
 
// Driver Code
$n = 100;
print("Palindromic primes smaller " .
      "than or equal to ".$n." are :\n");
printPalPrimesLessThanN($n);
 
// This code is contributed by mits
?>

Javascript

<script>
 
// javascript Program to print all palindromic primes
// smaller than or equal to n.
    
    // A function that returns true only if num
    // contains one digit
    function oneDigit(num)
    {
        // comparison operation is faster than
        // division operation. So using following
        // instead of "return num / 10 == 0;"
        return (num >= 0 && num < 10);
    }
      
    // A recursive function to find out whether
    // num is palindrome or not. Initially, dupNum
    // contains address of a copy of num.
    function isPalUtil(num , dupNum)
    {
        // Base case (needed for recursion termination):
        // This statement/ mainly compares the first
        // digit with the last digit
        if (oneDigit(num))
            return (num == (dupNum) % 10);
      
        // This is the key line in this method. Note
        // that all recursive/ calls have a separate
        // copy of num, but they all share same copy
        // of dupNum. We divide num while moving up
        // the recursion tree
        if (!isPalUtil(parseInt(num/10), dupNum))
            return false;
      
        // The following statements are executed when
        // we move up the recursion call tree
        dupNum = parseInt(dupNum/10);
      
        // At this point, if num%10 contains ith
        // digit from beginning, then (dupNum)%10
        // contains ith digit from end
        return (num % 10 == (dupNum) % 10);
    }
      
    // The main function that uses recursive function
    // isPalUtil() to find out whether num is palindrome
    // or not
    function isPal(num)
    {
        // If num is negative, make it positive
        if (num < 0)
           num = -num;
      
        // Create a separate copy of num, so that
        // modifications made to address dupNum don't
        // change the input number.
        var dupNum = num; // dupNum = num
      
        return isPalUtil(num, dupNum);
    }
      
    // Function to generate all primes and checking
    // whether number is palindromic or not
    function printPalPrimesLessThanN(n)
    {
        // Create a boolean array "prime[0..n]" and
        // initialize all entries it as true. A value
        // in prime[i] will finally be false if i is
        // Not a prime, else true.
        var prime = Array.from({length: n+1}, (_, i) => true);
         
        for (p = 2; p*p <= n; p++)
        {
            // If prime[p] is not changed, then it is
            // a prime
            if (prime[p])
            {
                // Update all multiples of p
                for (i = p*2; i <= n; i += p){
                    prime[i] = false;}
            }
        }
      
        // Print all palindromic prime numbers
        for (p = 2; p <= n; p++){
      
           // checking whether the given number is
           // prime palindromic or not
           if (prime[p] && isPal(p)){
              document.write(p + " ");
              }
           }
    }
     
    // Driver function
    var n = 100;
    document.write('Palindromic primes smaller than or equal to '+n+' are :<br>');
    printPalPrimesLessThanN(n);
 
// This code is contributed by Princi Singh
</script>

Producción: 
 

Palindromic primes smaller than or equal to 100 are :
2 3 5 7 11 

Este artículo es una contribución de Rahul Agrawal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *