Dado un número n y una array que contiene de 1 a (2n+1) números consecutivos. Se eligen tres elementos al azar. Encuentre la probabilidad de que los elementos elegidos estén en AP
Ejemplos :
Input : n = 2 Output : 0.4 The array would be {1, 2, 3, 4, 5} Out of all elements, triplets which are in AP: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 3, 5} No of ways to choose elements from the array: 10 (5C3) So, probability = 4/10 = 0.4 Input : n = 5 Output : 0.1515
La cantidad de formas de seleccionar 3 números cualesquiera de (2n+1) números son: (2n + 1) C 3
Ahora, para que los números estén en AP:
con diferencia común 1—{1, 2, 3}, {2 , 3, 4}, {3, 4, 5}…{2n-1, 2n, 2n+1}
con diferencia común 2—{1, 3, 5}, {2, 4, 6}, {3, 5 , 7}…{2n-3, 2n-1, 2n+1}
con diferencia común n— {1, n+1, 2n+1}
Por lo tanto, Número total del grupo AP de 3 números en (2n+1) números son:
(2n – 1)+(2n – 3)+(2n – 5) +…+ 3 + 1 = n * n ( La suma de los primeros n números impares es n * n )
Entonces, la probabilidad de 3 números elegidos al azar en (2n + 1) números consecutivos para estar en AP = (n * n) / (2n + 1) C 3 = 3 n / (4 (n * n) – 1)
C++
// CPP program to find probability that // 3 randomly chosen numbers form AP. #include <bits/stdc++.h> using namespace std; // function to calculate probability double procal(int n) { return (3.0 * n) / (4.0 * (n * n) - 1); } // Driver code to run above function int main() { int a[] = { 1, 2, 3, 4, 5 }; int n = sizeof(a)/sizeof(a[0]); cout << procal(n); return 0; }
Java
// Java program to find probability that // 3 randomly chosen numbers form AP. class GFG { // function to calculate probability static double procal(int n) { return (3.0 * n) / (4.0 * (n * n) - 1); } // Driver code to run above function public static void main(String arg[]) { int a[] = { 1, 2, 3, 4, 5 }; int n = a.length; System.out.print(Math.round(procal(n) * 1000000.0) / 1000000.0); } } // This code is contributed by Anant Agarwal.
Python3
# Python3 program to find probability that # 3 randomly chosen numbers form AP. # Function to calculate probability def procal(n): return (3.0 * n) / (4.0 * (n * n) - 1) # Driver code a = [1, 2, 3, 4, 5] n = len(a) print(round(procal(n), 6)) # This code is contributed by Smitha Dinesh Semwal.
C#
// C# program to find probability that // 3 randomly chosen numbers form AP. using System; class GFG { // function to calculate probability static double procal(int n) { return (3.0 * n) / (4.0 * (n * n) - 1); } // Driver code public static void Main() { int []a = { 1, 2, 3, 4, 5 }; int n = a.Length; Console.Write(Math.Round(procal(n) * 1000000.0) / 1000000.0); } } // This code is contributed by nitin mittal
PHP
<?php // PHP program to find probability that // 3 randomly chosen numbers form AP. // function to calculate probability function procal($n) { return (3.0 * $n) / (4.0 * ($n * $n) - 1); } // Driver code $a = array(1, 2, 3, 4, 5); $n = sizeof($a); echo procal($n); // This code is contributed by aj_36 ?>
Javascript
<script> // Javascript program to find probability that // 3 randomly chosen numbers form AP. // function to calculate probability function procal(n) { return (3.0 * n) / (4.0 * (n * n) - 1); } // Driver code let a = [1, 2, 3, 4, 5]; let n = a.length; document.write(procal(n)); // This code is contributed by _saurabh_jaiswal </script>
Producción:
0.151515
Complejidad de tiempo : O(1)