Dado un entero positivo n . La tarea es encontrar la suma del cuadrado del coeficiente binomial, es decir,
n C 0 2 + n C 1 2 + n C 2 2 + n C 3 2 + ……… + n C n-2 2 + n C n-1 2 + n C n 2
Ejemplos:
Input : n = 4 Output : 70 Input : n = 5 Output : 252
Método 1: (Fuerza bruta)
La idea es generar todos los términos del coeficiente binomial y encontrar la suma de los cuadrados de cada coeficiente binomial.
A continuación se muestra la implementación de este enfoque:
C++
// CPP Program to find the sum of square of // binomial coefficient. #include<bits/stdc++.h> using namespace std; // Return the sum of square of binomial coefficient int sumofsquare(int n) { int C[n+1][n+1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i, n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i-1][j-1] + C[i-1][j]; } } // Finding the sum of square of binomial // coefficient. int sum = 0; for (int i = 0; i <= n; i++) sum += (C[n][i] * C[n][i]); return sum; } // Driven Program int main() { int n = 4; cout << sumofsquare(n) << endl; return 0; }
Java
// Java Program to find the sum of // square of binomial coefficient. import static java.lang.Math.*; class GFG{ // Return the sum of square of // binomial coefficient static int sumofsquare(int n) { int[][] C = new int [n+1][n+1] ; int i, j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i, n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using //previously stored values else C[i][j] = C[i-1][j-1] + C[i-1][j]; } } // Finding the sum of square of // binomial coefficient. int sum = 0; for (i = 0; i <= n; i++) sum += (C[n][i] * C[n][i]); return sum; } // Driver function public static void main(String[] args) { int n = 4; System.out.println(sumofsquare(n)); } } // This code is contributed by // Smitha Dinesh Semwal
Python3
# Python Program to find # the sum of square of # binomial coefficient. # Return the sum of # square of binomial # coefficient def sumofsquare(n) : C = [[0 for i in range(n + 1)] for j in range(n + 1)] # Calculate value of # Binomial Coefficient # in bottom up manner for i in range(0, n + 1) : for j in range(0, min(i, n) + 1) : # Base Cases if (j == 0 or j == i) : C[i][j] = 1 # Calculate value # using previously # stored values else : C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) # Finding the sum of # square of binomial # coefficient. sum = 0 for i in range(0, n + 1) : sum = sum + (C[n][i] * C[n][i]) return sum # Driver Code n = 4 print (sumofsquare(n), end="\n") # This code is contributed by # Manish Shaw(manishshaw1)
C#
// C# Program to find the sum of // square of binomial coefficient. using System; class GFG { // Return the sum of square of // binomial coefficient static int sumofsquare(int n) { int[,] C = new int [n+1,n+1] ; int i, j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.Min(i, n); j++) { // Base Cases if (j == 0 || j == i) C[i,j] = 1; // Calculate value using //previously stored values else C[i,j] = C[i-1,j-1] + C[i-1,j]; } } // Finding the sum of square of // binomial coefficient. int sum = 0; for (i = 0; i <= n; i++) sum += (C[n,i] * C[n,i]); return sum; } // Driver function public static void Main() { int n = 4; Console.WriteLine(sumofsquare(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find the sum of // square of binomial coefficient. // Return the sum of square of binomial // coefficient function sumofsquare($n) { $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i, $n); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using previously // stored values else $C[$i][$j] = $C[$i-1][$j-1] + $C[$i-1][$j]; } } // Finding the sum of square of binomial // coefficient. $sum = 0; for ($i = 0; $i <= $n; $i++) $sum += ($C[$n][$i] * $C[$n][$i]); return $sum; } // Driven Program $n = 4; echo sumofsquare($n), "\n"; // This code is contributed by ajit ?>
Javascript
<script> // JavaScript Program to find the sum of // square of binomial coefficient. // Return the sum of square of // binomial coefficient function sumofsquare(n) { let C = new Array(n+1); // Loop to create 2D array using 1D array for (let i = 0; i < C.length; i++) { C[i] = new Array(2); } let i, j; // Calculate value of Binomial // Coefficient in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i, n); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using //previously stored values else C[i][j] = C[i-1][j-1] + C[i-1][j]; } } // Finding the sum of square of // binomial coefficient. let sum = 0; for (i = 0; i <= n; i++) sum += (C[n][i] * C[n][i]); return sum; } // Driver code let n = 4; document.write(sumofsquare(n)); // This code is contributed by code_hunt. </script>
Producción:
70
Método 2: (Usando la fórmula)
=
=
Prueba,
We know, (1 + x)n = nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn Also, (x + 1)n = nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn Multiplying above two equations, (1 + x)2n = [nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn] X [nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn] Equating coefficients of xn on both sides, we get 2nCn = nC02 + nC12 + nC22 + nC32 + ......... + nCn-22 + nCn-12 + nCn2 Hence, sum of the squares of coefficients = 2nCn = (2n)!/(n!)2.
Además, (2n)!/(n!) 2 = (2n * (2n – 1) * (2n – 2) * ….. * (n+1))/(n * (n – 1) * (n – 2) *….. * 1).
A continuación se muestra la implementación de este enfoque:
C++
// CPP Program to find the sum of square of // binomial coefficient. #include<bits/stdc++.h> using namespace std; // function to return product of number // from start to end. int factorial(int start, int end) { int res = 1; for (int i = start; i <= end; i++) res *= i; return res; } // Return the sum of square of binomial // coefficient int sumofsquare(int n) { return factorial(n+1, 2*n)/factorial(1, n); } // Driven Program int main() { int n = 4; cout << sumofsquare(n) << endl; return 0; }
Java
// Java Program to find the sum of square of // binomial coefficient. class GFG{ // function to return product of number // from start to end. static int factorial(int start, int end) { int res = 1; for (int i = start; i <= end; i++) res *= i; return res; } // Return the sum of square of binomial // coefficient static int sumofsquare(int n) { return factorial(n+1, 2*n)/factorial(1, n); } // Driven Program public static void main(String[] args) { int n = 4; System.out.println(sumofsquare(n)); } } // This code is contributed by // Smitha DInesh Semwal
Python
# Python 3 Program to find the sum of # square of binomial coefficient. # function to return product of number # from start to end. def factorial(start, end): res = 1 for i in range(start, end + 1): res *= i return res # Return the sum of square of binomial # coefficient def sumofsquare(n): return int(factorial(n + 1, 2 * n) /factorial(1, n)) # Driven Program n = 4 print(sumofsquare(n)) # This code is contributed by # Smitha Dinesh Semwal
C#
// C# Program to find the sum of square of // binomial coefficient. using System; class GFG { // function to return product of number // from start to end. static int factorial(int start, int end) { int res = 1; for (int i = start; i <= end; i++) res *= i; return res; } // Return the sum of square of binomial // coefficient static int sumofsquare(int n) { return factorial(n+1, 2*n)/factorial(1, n); } // Driven Program public static void Main() { int n = 4; Console.WriteLine(sumofsquare(n)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find the sum // of square of binomial coefficient. // function to return // product of number // from start to end. function factorial($start, $end) { $res = 1; for ($i = $start; $i <= $end; $i++) $res *= $i; return $res; } // Return the sum of // square of binomial // coefficient function sumofsquare($n) { return factorial($n + 1, 2 * $n) / factorial(1, $n); } // Driver Code $n = 4; echo sumofsquare($n), "\n"; // This code is contributed by ajit ?>
Javascript
<script> // Javascript Program to find // the sum of square of // binomial coefficient. // function to return product of number // from start to end. function factorial(start, end) { let res = 1; for (let i = start; i <= end; i++) res *= i; return res; } // Return the sum of square of binomial // coefficient function sumofsquare(n) { return parseInt (factorial(n+1, 2*n)/factorial(1, n), 10); } let n = 4; document.write(sumofsquare(n)); </script>
Producción:
70