MCM (Mínimo común múltiplo) de dos números es el número más pequeño que se puede dividir entre ambos números.
C++
// C++ program to find LCM of two numbers #include <iostream> using namespace std; // Recursive function to return gcd of a and b long long gcd(long long int a, long long int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to return LCM of two numbers long long lcm(int a, int b) { return (a / gcd(a, b)) * b; } // Driver program to test above function int main() { int a = 15, b = 20; cout <<"LCM of " << a << " and " << b << " is " << lcm(a, b); return 0; }
C
// C program to find LCM of two numbers #include <stdio.h> // Recursive function to return gcd of a and b int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Function to return LCM of two numbers int lcm(int a, int b) { return (a / gcd(a, b)) * b; } // Driver program to test above function int main() { int a = 15, b = 20; printf("LCM of %d and %d is %d ", a, b, lcm(a, b)); return 0; }
Java
// Java program to find LCM of two numbers. class Test { // Recursive method to return gcd of a and b static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to return LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } // Driver method public static void main(String[] args) { int a = 15, b = 20; System.out.println("LCM of " + a + " and " + b + " is " + lcm(a, b)); } }
Python3
# Python program to find LCM of two numbers # Recursive function to return gcd of a and b def gcd(a,b): if a == 0: return b return gcd(b % a, a) # Function to return LCM of two numbers def lcm(a,b): return (a / gcd(a,b))* b # Driver program to test above function a = 15 b = 20 print('LCM of', a, 'and', b, 'is', lcm(a, b)) # This code is contributed by Danish Raza
C#
// C# program to find LCM // of two numbers. using System; class GFG { // Recursive method to // return gcd of a and b static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // method to return // LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } // Driver method public static void Main() { int a = 15, b = 20; Console.WriteLine("LCM of " + a + " and " + b + " is " + lcm(a, b)); } } // This code is contributed by anuj_67.
PHP
<?php // PHP program to find LCM of two numbers // Recursive function to // return gcd of a and b function gcd( $a, $b) { if ($a == 0) return $b; return gcd($b % $a, $a); } // Function to return LCM // of two numbers function lcm( $a, $b) { return ($a / gcd($a, $b)) * $b; } // Driver Code $a = 15; $b = 20; echo "LCM of ",$a, " and " ,$b, " is ", lcm($a, $b); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript program to find LCM of two numbers // Recursive function to return gcd of a and b function gcd(a, b) { if (b == 0) return a; return gcd(b, a % b); } // Function to return LCM of two numbers function lcm(a, b) { return (a / gcd(a, b)) * b; } // Driver program to test above function let a = 15, b = 20; document.write("LCM of " + a + " and " + b + " is " + lcm(a, b)); // This code is contributed by Mayank Tyagi </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA